MHB Integer Solutions to x^3+y^3+z^3=2: Proving Infinitely Many

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove, that the equation:$x^3+y^3+z^3 = 2$- has infinitely many integer solutions.
 
Mathematics news on Phys.org
lfdahl said:
Prove, that the equation:$x^3+y^3+z^3 = 2$- has infinitely many integer solutions.

we have $(p+1)^3-(p-1)^3 = 6p^2 + 2$

so if we chose q such that $q^3 = 6p^2$

then $(p+1)^3 - (p-1)^3 - q^3 = 2$

so the 3 numbers are $(p+1, - p + 1, - q )$ and $p = 6m^3=>q=6m^2$ giving solution

so we have solution set $x = 6m^3+1, y = - 6m^3 + 1, z = -6m^2$ is the set for integer m >0 is the solution set

so there are infinite solutions
 
kaliprasad said:
we have $(p+1)^3-(p-1)^3 = 6p^2 + 2$

so if we chose q such that $q^3 = 6p^2$

then $(p+1)^3 - (p-1)^3 - q^3 = 2$

so the 3 numbers are $(p+1, - p + 1, - q )$ and $p = 6m^3=>q=6m^2$ giving solution

so we have solution set $x = 6m^3+1, y = - 6m^3 + 1, z = -6m^2$ is the set for integer m >0 is the solution set

so there are infinite solutions

Very short and elegant, kaliprasad. Thankyou for your contribution!
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top