Integral after alpha parametrization

jd24680
Messages
1
Reaction score
0
I have been stuck on the following double integral for some time:

∫(0 to inf) dα1 ∫(0 to inf) dα2 a1^(n1) * exp(-i (α1+α2) m^2) * (α1+α2)^(n2)

which arose after using alpha paremetrization on a Feynman integral. I was advised by my supervisor to use the substitution α1 = 1/2 (t+u) and α2 = 1/2 (t-u) but after doing this I fail to see how it helps.

Any advice on how to do this?

Thanks.
 
Physics news on Phys.org
Show your work using the recommended substitutions. Perhaps you made an error in your algebra.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top