Integral Calculator: $$\int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}}$$

  • Context: MHB 
  • Thread starter Thread starter Also sprach Zarathustra
  • Start date Start date
  • Tags Tags
    Calculator Integral
Click For Summary
SUMMARY

The integral $$\int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}}$$ evaluates to $$\pi$$ under the condition that $$b > a$$. The solution involves trigonometric substitution, specifically using $$x = a \sin^2{t} + b \cos^2{t}$$, which simplifies the integral to a form that can be easily computed. Additionally, an alternative method utilizing the beta function confirms the result, demonstrating the versatility of approaches in solving this integral.

PREREQUISITES
  • Understanding of trigonometric identities and substitutions
  • Familiarity with integral calculus, particularly definite integrals
  • Knowledge of the beta function and its relationship to gamma functions
  • Basic algebraic manipulation of square roots and polynomials
NEXT STEPS
  • Study trigonometric substitutions in integral calculus
  • Explore the properties and applications of the beta function
  • Learn about gamma functions and their relation to integrals
  • Investigate other methods for evaluating definite integrals
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques will benefit from this discussion.

Also sprach Zarathustra
Messages
43
Reaction score
0
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$
 
Physics news on Phys.org
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$

Let $\displaystyle x = a~\sin^2{t}+b~\cos^2{t} \implies \begin{cases} x = (a-b)\sin^2{t}+b
\\ x = a+(b-a)\cos^2{t}
\\ dx = 2(a-b)\sin{t}\cos{t}
\end{cases}$ and $t= \cos^{-1}\left(\frac{\sqrt{x-a}}{\sqrt{b-a}}\right)$.Thus $\displaystyle I = \int_{0}^{\pi/2}\frac{2(b-a)\sin{t}\cos{t}}{\sqrt{b-a}\sqrt{b-a}\sin{t}\cos{t}}\;{dt} = \frac{2(b-a)}{(b-a)}\int_{0}^{\pi/2}\;{dt} = 2 \left(\frac{\pi}{2}\right) = \pi.$
 
Last edited:
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$

\[ \displaystyle \begin{align*} \int_a^b{\frac{dx}{\sqrt{(x - a)(b - x)}}} &= \int_a^b{\frac{dx}{\sqrt{-x^2 + (a + b)x - ab}}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left[ x^2 - (a + b)x + ab \right]}}} \\ &= \int{\frac{dx}{\sqrt{-\left\{ x^2 - (a + b)x + \left[-\left(\frac{a + b}{2}\right)\right]^2 - \left[-\left(\frac{a + b}{2}\right)\right]^2 + ab \right\} }}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left\{ \left[ x - \left( \frac{a+b}{2} \right) \right]^2 - \frac{(a + b)^2}{4} + \frac{4ab}{4} \right\}}}} \\ &= \int_a^b{\frac{dx}{\sqrt{-\left\{ \left[ x - \left( \frac{a + b}{2} \right) \right]^2 + \frac{4ab - a^2 - 2ab - b^2}{4} \right\} }}} \\ &= \int_a^b{\frac{dx}{\sqrt{- \left\{ \left[ x - \left(\frac{a + b}{2}\right) \right]^2 - \frac{a^2 - 2ab + b^2}{4} \right\} }}} \\ &= \int_a^b{ \frac{dx}{\sqrt{ - \left\{ \left[ x - \left(\frac{a + b}{2}\right) \right]^2 - \left(\frac{a - b}{2}\right)^2 \right\} }} } \\ &= \int_a^b{\frac{dx}{\sqrt{ \left( \frac{a - b}{2} \right)^2 - \left[ x - \left(\frac{a + b}{2}\right) \right]^2 }}} \end{align*} \]

Now make the substitution $ x - \left(\frac{a + b}{2}\right) = \left(\frac{a - b}{2}\right)\sin{\theta} \implies dx = \left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta $, and note that when $x = a, \theta = \frac{\pi}{2}$ and when $x = b, \theta = \frac{3\pi}{2}$ and the integral becomes

\[ \displaystyle \begin{align*} \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{ \frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2 - \left[\left(\frac{a - b}{2}\right)\sin{\theta}\right]^2} } } &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left( \frac{a - b}{2} \right)^2 - \left( \frac{a - b}{2} \right)^2 \sin^2{\theta} } } } \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2\left(1 - \sin^2{\theta} \right) }}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\sqrt{ \left(\frac{a - b}{2}\right)^2\cos^2{\theta} }}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{\frac{\left(\frac{a - b}{2}\right)\cos{\theta}\,d\theta}{\left(\frac{a - b}{2}\right)\cos{\theta}}} \\ &= \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}}{1\,d\theta} \\ &= \left[\theta\right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \\ &= \frac{3\pi}{2} - \frac{\pi}{2} \\ &= \pi \end{align*} \]

Q.E.D. :)
 
The most important thing in order to make this work: $b>a.$
 
Markov said:
The most important thing in order to make this work: $b>a.$

Yes, that's what I had assumed, but you're right, it's important to note that :)
 
Markov said:
The most important thing in order to make this work: $b>a.$

if we miss this point ,we are going to do big mistake
 
Also sprach Zarathustra said:
Calculate the following integral:

$$ \int_a^b\frac{dx}{\sqrt{(x-a)(b-x)}} $$

That might seems a bit strange but this can be solved using the beta function !

I will make a substitution first ... \text{let : }x = a+(b-a) t

\int^1_0 \frac{(b-a) \, dt}{\sqrt{(a+(b-a) t - a) (b-a-(b-a) t)}}

\int^1_0 \frac{(b-a) \, dt}{(b-a) \sqrt{t(1- t)}}

\int^1_0 \frac{(b-a) \, dt}{(b-a) \sqrt{t(1- t)}}

\int^1_0 \, t^{-\frac{1}{2}}(1-t)^{-\frac{1}{2}}\, dt\, = \, \Gamma(\frac{1}{2})\Gamma(\frac{1}{2})= \sqrt{\pi}\cdot \sqrt{\pi}= \pi
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
4K
  • · Replies 31 ·
2
Replies
31
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K