I Integral computation in scattering theory

jouvelot
Messages
51
Reaction score
2
Hello everyone,

Still working on my reading of Weinberg's Lecture notes on QM book. At one point, the following integral $$\int d^3 xd^3 x' V(\vec{x~}) V(\vec{x'}) / |\vec{x~} - \vec{x'}|^2$$ has to be computed in the case where ##V(r) = -e^{-r/R}/r##. This reminds me of retarded potentials, but I don't have my other books with me, and cannot find a way to compute this integral. I've been trying with some residues, but this is unwieldy. The result should be ##8\pi^2 R^2##.
Thanks for any hints that would help me compute it.
Bye,
Pierre
 
Physics news on Phys.org
I think you can employ the generating function of the Legendre polynomials. Using this, you can write
$$
\frac{1}{\sqrt{|\mathbf{x}-\mathbf{x}'|}} = \sum_{l=0}^\infty \sum_{m=-l}^{m=l} \frac{4\pi}{2l+1} \frac{(x_<)^l}{(x_>)^{l+1}} Y_{lm}^*(\theta,\phi) Y_{lm}(\theta',\phi')
$$
using the orthonormality of the spherical harmonics, you can simplify the sums.
I haven't tried myself though, nor know whether the resulting integral will be solvable but at least I know where this is going to.
 
Last edited:
Hi blue_leaf,

Thanks a lot for the hint. I'll look into this approach :)

Bye,

Pierre
 
Hi blue_leaf,

Indeed, this seems to (almost) work, using a squared Legendre expansion of ##1/|\vec{x}-\vec{x'}|## in the orthogonal ##P_l(cos (\gamma))## polynomials (no need to go to harmonics). I used the online version of Wolfram Alpha (great tool, and free) to compute the sum and integrate the resulting function; I do get something in ##\pi^2R^2##, although the coefficient is off by a factor of 2 -- although I can almost make up a story why just half of the result is valid, due to convergence constraints. But since they are other minor details that elude me (limit behavior of Exponential integral Ei and tanh##{}^{-1}##, among others), I'll feel happy for now :)

Thanks for your help, which had me dig more into these issues.

Pierre
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top