1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Integral involving delta distribution

  1. Jan 22, 2008 #1
    1. The problem statement, all variables and given/known data

    Solving a problem about the variational method I came across one nasty integral. Here goes:

    [tex] \bar{H} := \frac{ < \hat{0} | H | \hat{0} > }{< \hat{0} | \hat{0} >} [/tex]


    2. Relevant equations

    [tex] H = -\frac{ \hbar^2 }{2m} \frac{\partial ^2}{\partial x^2} + \frac{1}{2} m \omega ^2 x^2 [/tex]

    [tex] < x | \hat{0} > = \text{e}^{-\beta |x|} [/tex]

    [tex] < x' | \left( -i \hbar \frac{\partial}{\partial x} \right)^n | \alpha > = (-i \hbar)^n \frac{\partial^n}{\partial x'^n} < x' | \alpha > [/tex]

    [tex] \int f(x) \delta^{(n)}(x-a) dx = - \int \frac{\partial f}{\partial x} \delta ^{(n-1)} (x-a) dx [/tex]

    3. The attempt at a solution

    Pretty straightforward I got

    [tex] < \hat{0} | \hat{0} > = \frac{1}{\beta} [/tex]

    and so:

    [tex] \bar{H} = \beta \int \int dx' dx'' < \hat{0} | x' > < x' | \left( -\frac{ \hbar^2 }{2m} \frac{\partial ^2}{\partial x^2} + \frac{1}{2} m \omega ^2 x^2 \right) | x'' > < x'' | \hat{0} > [/tex]

    [tex] \Leftrightarrow \bar{H} = \beta \int \int dx' dx'' \text{e}^{-\beta |x'|} < x' | \left( -\frac{ \hbar^2 }{2m} \frac{\partial ^2}{\partial x^2} + \frac{1}{2} m \omega ^2 x^2 \right) | x'' > \text{e}^{-\beta |x''|} = I_1 + I_2[/tex]

    Thus I ended up with two terms:

    [tex] I_2 = 4 \beta \int_0^{\infty} \int_0^{\infty} dx' dx'' \text{e}^{-\beta x'} < x' |\frac{1}{2} m \omega ^2 x^2 \right) | x'' > \text{e}^{-\beta x''} = \frac{2 \beta \omega ^2}{m} \int_0^{\infty} \int_0^{\infty} dx' dx'' \text{e}^{-\beta x'} x''^2 \delta (x' - x'') [/tex]

    [tex] \Leftrightarrow I_2 = 2 \beta m \omega ^2 \int_0^{\infty} dx' \text{e}^{-2 \beta x'} x'^2 = 2 \beta m \omega ^2 \cdot \frac{2!}{(2\beta)^3} = \frac{m \omega^2}{2 \beta^2}[/tex]

    [tex] I_1 = 4 \beta \int_0^{\infty} \int_0^{\infty} dx' dx'' \text{e}^{-\beta x'} < x' |-\frac{ \hbar^2 }{2m} \frac{\partial ^2}{\partial x^2} | x'' > \text{e}^{-\beta x''} = \frac{ - 2 \beta \hbar^2 }{m} \int_0^{\infty} \int_0^{\infty} dx' dx'' \text{e}^{-\beta x'} \delta'' (x' - x'') \text{e}^{-\beta x''} [/tex]

    [tex] \Leftrightarrow I_1 = \frac{ - 2 \beta^3 \hbar^2 }{m} \int_0^{\infty} \int_0^{\infty} dx'' \text{e}^{-2 \beta x''} = \frac{ - 2 \beta^3 \hbar^2 }{m} \cdot \frac{1}{2 \beta} = \frac{- \beta^2 \hbar^2 }{m} [/tex]

    We finally arrive at

    [tex] \bar{H} = I_1 + I_2 = \frac{- \beta^2 \hbar^2 }{m} + \frac{m \omega^2}{2 \beta^2} [/tex]

    Does this seem right to you guys?
     
  2. jcsd
  3. Jan 22, 2008 #2
    Actually I am a little uncertain here if I should calculate either

    [tex] \frac{\partial ^2 \delta ( x' - x'')}{\partial x''^2} [/tex]

    or

    [tex] \frac{\partial ^2}{\partial x''^2} \left( \delta ( x' - x'') \text{e}^{-\beta x''}\right) [/tex]

    in [itex] I_1 [/itex].
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Integral involving delta distribution
  1. Integral delta (Replies: 2)

Loading...