Integration of a function within another function

  • #1
sarvesh0303
61
2

Homework Statement



In differentiation we use the chain rule to find the derivative of a function within other function [f(g(x))]
Is there any similar method for indefinite integration for example how am I supposed to find the integral
of e^(4x^3+6x^2+8x+9) or sin(x^2).

Homework Equations


none


The Attempt at a Solution


Couldn't reach anywhere!
 

Answers and Replies

  • #2
voko
6,054
391
[tex]
\frac {df(g(x))} {dx} = f'(g(x))g'(x)
\Rightarrow \int \frac {df(g(x))} {dx} dx = \int f'(g(x))g'(x) dx
[/tex] This is sometimes called "u-substitution", meaning one let's [itex]u = g(x)[/itex], then [tex]
\int f'(g(x))g'(x) dx = \int f'(u) du = f(u) + C
[/tex] Finding a u-substitution is a matter of art (which means lots of practice and sometimes luck). But even that does not guarantee you can always take an indefinite analytically. The integrals you listed are of this kind. [itex]\int sin(x^2) dx[/itex] is known as the Fresnel integral.
 
  • #3
LCKurtz
Science Advisor
Homework Helper
Insights Author
Gold Member
9,568
774
To add to voko's comment, since the u-substitution method is essentially the chain rule in reverse, if the function which you are trying to antidifferentiate did not come as the result of a chain rule calculation, you would not expect the u-substitution method to work. That is why, for example you can work$$
\int xe^{x^2}\, dx$$with the substitution ##u=x^2## but you can't work$$
\int e^{x^2}\, dx$$that way. You can tell that the first comes from a chain rule because, to within a constant, the integrand is the derivative of ##e^{x^2}## with the extra ##x## in the integral coming from the chain rule. That ##x## is missing in the second integral and it can not be worked with the u-substitution or, as it turns out, any other elementary method.
 

Suggested for: Integration of a function within another function

  • Last Post
Replies
3
Views
620
Replies
7
Views
388
  • Last Post
Replies
9
Views
585
Replies
14
Views
607
Replies
4
Views
741
Replies
4
Views
489
Replies
7
Views
377
Replies
2
Views
435
Top