Amad27
- 409
- 1
ZaidAlyafey said:Hint
$$\sum_{k=1}^\infty \frac{H_k}{(k+1)^q} = \sum_{n=2}^\infty \frac{H_{n-1}}{n^q} = \sum_{n=2}^\infty \frac{H_n -\frac{1}{n}}{n^q} = \sum_{n=2}^\infty\frac{H_n}{n^{q+1}}-(\zeta(q+1)-1)$$
You can use the same concept to find
$$\sum_{k=1}^\infty \frac{H_k}{(k+2)^q}$$
It follows that:
$H_k = H_{k-1} + \frac{1}{k}$
From the original hint:
$$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$
$H_{k-1} = H_k + \frac{1}{k}
$$\sum_{n=1}^\infty \frac{H_n}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$
$$= \sum_{n=1}^\infty \frac{H_{n-1} + \frac{1}{n}}{n^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{k=1}^{q-2}\zeta(k+1)\zeta(q-k)$$
Let n = k-1
$$= \sum_{k=2}^\infty \frac{H_{k} + \frac{1}{k+1}}{(1+k)^q}= \left(1+\frac{q}{2} \right)\zeta(q+1)-\frac{1}{2}\sum_{z=1}^{q-2}\zeta(z+1)\zeta(q-z)$$
Is this the derivation? and then we split up the numerator to get the other formula.
And I suppose we use the same method from $k+2$
By the way, you sent me the URL:
proof .
It didnt show up. I'll try to come up with my own proof (so don't show a link yet!)
Thanks =)