I found an interesting
thread .
$$\sum_{n\geq 1} H^2_n x^n = \frac{\log^2(1-x)+\operatorname{Li}_2(x)}{1-x}$$
$$\sum_{n\geq 1} H^2_n x^{n-1} = \frac{\log^2(1-x)}{x}+\frac{\log^2(1-x)}{1-x}+\frac{\operatorname{Li}_2(x)}{1-x}+\frac{\operatorname{Li}_2(x)}{x}$$$$\sum_{n\geq 1} \frac{H^2_n}{n} x^{n} = \int^x_0\frac{\log^2(1-t)}{t}\,dt +\int^x_0\frac{\operatorname{Li}_2(t)}{1-t}\,dt-\frac{1}{3}\log^3(1-x)+\operatorname{Li}_3(x)$$
$$\int^x_0\frac{\operatorname{Li}_2(t)}{1-t}\,dt = -\log(1-x)\operatorname{Li}_2(x)-\int^x_0 \frac{\log^2(1-t)}{t}\,dt$$
Hence we get
$$\sum_{n\geq 1} \frac{H^2_n}{n} x^{n} = -\log(1-t)\operatorname{Li}_2(t)-\frac{1}{3}\log^3(1-x)+\operatorname{Li}_3(x)$$
$$\sum_{n\geq 1} \frac{H^2_n}{n} x^{n-1} = -\frac{\log(1-x)\operatorname{Li}_2(x)}{x}-\frac{1}{3}\frac{\log^3(1-x)}{x}+\frac{\operatorname{Li}_3(x)}{x}$$
$$\sum_{n\geq 1} \frac{H^2_n}{n^2} x^{n} =\frac{ \operatorname{Li}^2_2(x)}{2}-\frac{1}{3}\int^x_0\frac{\log^3(1-t)}{t}\,dt+\operatorname{Li}_4(x)$$
$$\frac{1}{3}\int^x_0\frac{\log^3(1-t)}{t}\,dt =\operatorname{Li}_4(x)+\frac{ \operatorname{Li}^2_2(x)}{2}-\sum_{n\geq 1} \frac{H^2_n}{n^2} x^{n} $$