MHB How can I simplify this integral using integration by parts?

  • Thread starter Thread starter ra_forever8
  • Start date Start date
  • Tags Tags
    Integration
AI Thread Summary
The integral I(x) is defined as I(x) = ∫₀² (1+t) e^(x cos[π(t-1)/2]) dt, and the goal is to show that I(x) approximates to 4 + (8/π)x + O(x²) as x approaches 0. To simplify the integral, the McLaurin series expansion is utilized, leading to the evaluation of I(0) = 4 and the derivative I'(0) = ∫₀² cos[π(t-1)/2](1+t) dt, which simplifies to (8/π). The discussion emphasizes the use of differentiation under the integral sign to derive I'(x). Overall, the method clarifies how to handle the exponential term in the integral using integration by parts and series expansion techniques.
ra_forever8
Messages
106
Reaction score
0
Consider the integral
\begin{equation}
I(x)=\int^{2}_{0} (1+t) e^{xcos[\pi (t-1)/2]} dt
\end{equation}
show that
\begin{equation}
I(x)= 4+ \frac{8}{\pi}x +O(x^{2})
\end{equation}
as $x\rightarrow0$.=> Using integration by parts, but its too complicated for me because of huge exponential term.
please help me.
 
Mathematics news on Phys.org
First represent the integrand as $f(t)+xg(t)+O(x^2)$.
 
grandy said:
Consider the integral
\begin{equation}
I(x)=\int^{2}_{0} (1+t) e^{xcos[\pi (t-1)/2]} dt
\end{equation}
show that
\begin{equation}
I(x)= 4+ \frac{8}{\pi}x +O(x^{2})
\end{equation}
as $x\rightarrow0$.=> Using integration by parts, but its too complicated for me because of huge exponential term.
please help me.

If You expand I(x) in McLaurin series You have...

$\displaystyle I(x) = I(0) + I^{\ '} (0)\ x + \mathcal{O} (x^{2})\ (1)$

The first term is...

$\displaystyle I(0) = \int_{0}^{2} (1 + t)\ d t = 4\ (2)$

The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t = - \frac{2}{\pi^{2}}\ | \pi\ (1+ t)\ \cos ( \frac{\pi}{2}\ t )- 2\ \sin ( \frac{\pi}{2}\ t) |_{0}^{2} = \frac{8}{\pi}\ (3) $

Kind regards

$\chi$ $\sigma$
 
That was so clear. you made the solution so easy to understand. Thank you very much sir.
 
The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t $

how did you get the above term or $I'(x)$ term?
please clarify me. other than that everything is perfect.
 
grandy said:
The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t $

how did you get the above term or $I'(x)$ term?
please clarify me. other than that everything is perfect.

chisigma used this: Differentiation under the integral sign - Wikipedia, the free encyclopedia

He differentiated wrt $x$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top