soroban
- 191
- 0
There is an interesting problem at MHF.
I think I have an elegant solution for it,
but the site won't let me post my reply.
(It's only on this one problem. Go figure!)
Anyway, I just have to share my solution.
Add 2 to both sides: \:a^4 + 2 + \frac{1}{a^4} \:=\:121 \quad\Rightarrow\quad \left(a^2 + \frac{1}{a^2}\right)^2 \:=\: 121a^4+\frac{1}{a^4} \:=\:119.\;\;\text{Find }\,a^3-\frac{1}{a^3}
Hence: \;a^2 + \frac{1}{a^2} \:=\:11Subtract 2 from both sides: \:a^2 - 2 + \frac{1}{a^2} \;=\;9 \quad\Rightarrow\quad \left(a - \frac{1}{a}\right)^2 \:=\:9
Hence: \; a - \frac{1}{a} \:=\:3a^3 - \frac{1}{a^3} \;=\;\left(a-\frac{1}{a}\right)\left(a^2 + 1 + \frac{1}{a^2}\right)
. . . . . . . =\;\underbrace{\left(a - \frac{1}{a}\right)}_{\text{This is 3}}\left(\underbrace{a^2 + \frac{1}{a^2}}_{\text{This is 11}} + 1\right)Therefore: \;a^3 - \frac{1}{a^3} \;=\;(3)(12) \;=\;36