Internal and external torques.

  • Thread starter Thread starter transparent
  • Start date Start date
  • Tags Tags
    Internal Torques
Click For Summary
SUMMARY

This discussion clarifies the distinction between internal and external torques in the context of angular momentum conservation. It establishes that a torque is internal if its reactionary force is within the defined system. For example, when two rough cylinders interact, the torque due to friction is external to each cylinder if considered individually, preventing angular momentum conservation. However, if both cylinders are treated as a combined system, angular momentum is conserved if the system is isolated. The discussion emphasizes the importance of clearly defining the system to accurately assess torque types.

PREREQUISITES
  • Understanding of angular momentum conservation principles
  • Familiarity with torque and its relation to forces
  • Knowledge of frictional forces in mechanical systems
  • Ability to define and analyze physical systems
NEXT STEPS
  • Study the principles of angular momentum conservation in isolated systems
  • Learn about the effects of friction on torque in mechanical systems
  • Explore the concept of reactionary forces in physics
  • Investigate the role of external forces in torque calculations
USEFUL FOR

Physics students, mechanical engineers, and anyone interested in understanding the dynamics of rotating bodies and torque interactions.

transparent
Messages
19
Reaction score
0
How do I tell if a torque on a system is internal or external before conserving angular momentum? I know that if a force has its reactionary force in the system, then it is an internal force and we can conserve the linear momentum of the system. But I don't know how to recognize a reactionary torque. For example, if two rough rotating bodies (say cylinders) are brought into contact with each other, the torque experienced by them due to friction is different and hence the angular momentum cannot be conserved in this two-body system even though the forces are all internal.
 
Physics news on Phys.org
It's simple enough. Before you set out figuring out what's internal and what's external, you have to spell out to yourself what your system is. In this case, if your system is either one of the cylinders, then the other cylinder is external to it and neither system's angular momentum will be conserved. If your system is both cylinders together and this system is isolated, then the sum of the angular momenta of the cylinders will be conserved throughout. When, because of friction, the surfaces in contact come to rest relative to each other, the two-cylinder system will rotate about an axis passing through its center of mass. If the two-cylinder system is not isolated, say because the cylinders spin about shafts that are firmly attached to the Earth, then the angular momentum of the two-cylinder system is not conserved. However, the angular momentum of the two-cylinder system plus Earth will be conserved. Do you see how it woks?
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
686
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 60 ·
3
Replies
60
Views
5K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
16K