Interpolation with 2 variables

Jhenrique
Messages
676
Reaction score
4
If given three points ##P_0 = (x_0, y_0)##, ##P_1 = (x_1, y_1)## and ##P_2 = (x_2, y_2)##, the polynomial function ##f(x)## that intersect those points is ##f(x) = a_2 x^2 + a_1 x^1 + a_0 x^0##.

where:
##
\begin{bmatrix}
a_0\\
a_1\\
a_2\\
\end{bmatrix}
=

\begin{bmatrix}
x_0^0 & x_1^0 & x_2^0 \\
x_0^1 & x_1^1 & x_2^1 \\
x_0^2 & x_1^2 & x_2^2 \\
\end{bmatrix}^{-T}

\begin{bmatrix}
y_0\\
y_1\\
y_2\\
\end{bmatrix}##

And this ideia can extended for ##P_n## points... so, analogously, given a set of points, exist a relationship between the coefficients of ##Ax^2+Bxy+Cy^2+Dx+Ey+F=0## and the coordinates of the points?
 
Mathematics news on Phys.org
Yes, that is a standard result. Five points in the plane determine a quadratic in two variables, if no three are collinear the quadratic will be unique and non degenerate. The coefficients can be found by solving a linear system like in the one variable case.

http://en.wikipedia.org/wiki/Five_points_determine_a_conic
 
lurflurf said:
Yes, that is a standard result. Five points in the plane determine a quadratic in two variables, if no three are collinear the quadratic will be unique and non degenerate. The coefficients can be found by solving a linear system like in the one variable case.

http://en.wikipedia.org/wiki/Five_points_determine_a_conic

Yeah! But don't exist the equation of the coefficients in function of the points' coordinates in the wikipage...
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top