da_willem
- 594
- 1
If you express a wave as a Fourier series like:
z(x,t)= \sum _{n=1} ^{ inf.} A_n cos(nk_0 x - \omega (n) t )
Then what is the physical interpretation of a non-zero imaginary part of a component amplitude?
z(x,t)= \sum _{n=1} ^{ inf.} A_n cos(nk_0 x - \omega (n) t )
Then what is the physical interpretation of a non-zero imaginary part of a component amplitude?