Interrelationship between power of 2 and integer length

Nile3
Messages
42
Reaction score
0
Hello, I was wondering if someone knew the equation which describe the exact or statistical relation between the length(# of digits) of a power of 2 based on it's power.

I plotted 200 of the powers in mathematica and I get a fairly straightforward staircase plot. I'm just wondering what's the rule here.

4.jpg
 
Mathematics news on Phys.org
The length of an integer ##x## in basis 10 is given by ##\lfloor\log_{10}(x)\rfloor+1##, where the strange brackets denote the largest integer smaller or equal than ##x##. So if ##x=2^n##, then the length is

\lfloor \log_{10}(2^n)\rfloor + 1 \sim n\log_{10}(2) + 1
 
  • Like
Likes 1 person
If the number of digits of a number increases linearly, the number increases exponentially; if the exponent of a number increases linearly, the number increases exponentially. Basically you've plotted the implicit function 10^y = 2^x.

y/x = b is a constant because the equation 2 = 10^b has one root. To estimate b consider 2^10 = 1024 and 10^3 = 1000.
 
Last edited:
n * (memorize 0.3 as log[10,2]) +1, excellent, thanks!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top