MHB Intersecon between a line and hypershere in R4 to RN

  • Thread starter Thread starter LMHmedchem
  • Start date Start date
  • Tags Tags
    Line
LMHmedchem
Messages
20
Reaction score
0
Hello Again,

If I have point B in an orthogonal n-space and point C at the origin of the same space,
Code:
point_B = 0.03299720  0.00585822  -0.36979000 -0.43413200  -0.60787700  0.61335300  0.76003400
point_C = 0.00000000  0.00000000   0.00000000  0.00000000   0.00000000  0.00000000  0.00000000

this would make the vector and from point_B to point_C,
Code:
 vBC  = -0.03299720   -0.00585822   0.36979000   0.43413200   0.60787700   -0.61335300   -0.76003400
|vBC| = 1.28440897

If I were to place a hypersphere around point_B at a radius, say 10% of |vBC| = 0.128, how would I define the equation of that hypersphere and the coordinates of the intersection between the hypersphere and vBC?

My understanding is the the equation for a hypersphere in R6 would be,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}={R}^{2}$$

or in this case, the set of all points that satisfy,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}=1.28$$

I assume that we would find the equation of the line BC and then the simultaneous solution to both equations.

I am not really sure how to generate the equation of the line BC in R6. I am never quite sure if this is a line, plane, or hyperplane. As far as the intersecting point, will there actually be a point that is both on the line and in the hypersphere, or can we only find the point on BC that is closest to the hypersphere?

Thanks again,

LMHmedchem
 
Physics news on Phys.org
LMHmedchem said:
If I have point B in an orthogonal n-space and point C at the origin of the same space,

If I were to place a hypersphere around point_B at a radius, say 10% of |vBC| = 0.128, how would I define the equation of that hypersphere and the coordinates of the intersection between the hypersphere and vBC?

My understanding is the the equation for a hypersphere in R6 would be,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}={R}^{2}$$

or in this case, the set of all points that satisfy,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}=1.28$$

I assume that we would find the equation of the line BC and then the simultaneous solution to both equations.

I am not really sure how to generate the equation of the line BC in R6. I am never quite sure if this is a line, plane, or hyperplane. As far as the intersecting point, will there actually be a point that is both on the line and in the hypersphere, or can we only find the point on BC that is closest to the hypersphere?

Hi LMHmedchem,

A hypersphere consists of all points with the same distance to a point.
The equation of a hypersphere around B with radius R is therefore:
$$\| \overrightarrow x - \overrightarrow B\|= R \tag 1$$

The equation of a line through the origin and with direction $\overrightarrow{BC}$ is:
$$\overrightarrow x= \lambda \overrightarrow{BC} \tag 2$$

And since $C$ is actually the origin, we have:
$$\overrightarrow B = \overrightarrow{CB} = -\overrightarrow{BC} \tag 3$$

Substitute (2) and (3) in (1) to get:
$$\| \lambda \overrightarrow{BC} - (-\overrightarrow{BC})\| = R \quad\Rightarrow\quad
\| (\lambda+1) \overrightarrow{BC}\| = |\lambda+1| \cdot\|\overrightarrow{BC}\| =R \quad\Rightarrow\quad
|\lambda+1| = \frac{R}{BC}\quad\Rightarrow\quad
\lambda = -1\pm\frac R{BC} \tag 4
$$
That is, there are 2 points of intersection:
$$\overrightarrow x = \left(-1\pm\frac R{BC}\right)\overrightarrow{BC}$$
 
LMHmedchem said:
Hello Again,

If I have point B in an orthogonal n-space and point C at the origin of the same space,
Code:
point_B = 0.03299720  0.00585822  -0.36979000 -0.43413200  -0.60787700  0.61335300  0.76003400
point_C = 0.00000000  0.00000000   0.00000000  0.00000000   0.00000000  0.00000000  0.00000000
This is odd. You titled this "R4 to RN" but this is clearly in R7.

this would make the vector and from point_B to point_C,
Code:
 vBC  = -0.03299720   -0.00585822   0.36979000   0.43413200   0.60787700   -0.61335300   -0.76003400
|vBC| = 1.28440897

If I were to place a hypersphere around point_B at a radius, say 10% of |vBC| = 0.128, how would I define the equation of that hypersphere and the coordinates of the intersection between the hypersphere and vBC?

My understanding is the the equation for a hypersphere in R6 would be,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}={R}^{2}$$

or in this case, the set of all points that satisfy,
$${x}_{1}^{2} + {x}_{2}^{2}+{x}_{3}^{2}+{x}_{4}^{2}+{x}_{5}^{2}+{x}_{6}^{2}=1.28$$
No, if the radius is 0.128, that would be equal to $$0.128^2= 0.016384$$
I assume that we would find the equation of the line BC and then the simultaneous solution to both equations.

I am not really sure how to generate the equation of the line BC in R6. I am never quite sure if this is a line, plane, or hyperplane. As far as the intersecting point, will there actually be a point that is both on the line and in the hypersphere, or can we only find the point on BC that is closest to the hypersphere?

Thanks again,

LMHmedchem
A line is one dimensional. In 7 dimensions, you would need to write 6 equations in the 7 variables to represent a line. In higher than two dimensions, the simplest way to write a line is in parametric equations with one parameter.

The line from (0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000, 0.00000000) to (0.03299720, 0.00585822, -0.36979000, -0.43413200, -0.60787700, 0.61335300, 0.76003400) will be represented by
x1= 0.03299720t, x2= 0.00585822t, x3= -0.36979000t, x4= -0.43413200t, x5= -0.60787700t, x6= 0.61335300t, x7= 0.76003400t.
It should be easy to see that t= 0 gives the first point, t= 1 gives the second point.

In general, the line from (A1, A2, A3, …) to (B1, B2, B3, …) is given by
x1= (B1- A1)t+ A1, x2= (B2- A2)t+ A2, x3= (B3- A3)t+ A3, …

You see that when t= 0, x1= A1, x2= B2, x3= B3, … and when t= 1, x1= (B1- A1)+ A1= B1, x2= (B2- A2)+ A2= B2, x3= (B3- A3)+ A3= B3, etc.

In the case that A= (0, 0, 0, ….) as here, that reduces to
x1= B1t, x2= B2t x3= B3t, ….
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top