Intersection of an infinite set

michonamona
Messages
120
Reaction score
0
Let G_{n} = (-1/n,1/n) for all n in N

let G= \bigcap^{\inft}_{n=1}
 
Physics news on Phys.org
So, what's the question/problem?? The intersection is simply 0 (zero, a single number). Hence the intersection of an infinite number of open sets is not necessarily open, whereas the union is always open, as is the finite intersectiion of them. With the closed sets, it's the other way round :).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top