MHB Intersection Points & Finding Unknown Variable

AI Thread Summary
The line with equation y = x + k intersects the parabola y = x^2 + x − 2 at two distinct points based on the value of k. Setting the equations equal leads to the quadratic equation 0 = x^2 - 2 - k. The discriminant method is applied, revealing that for two distinct intersection points, k must be greater than -2. If k equals -2, there is only one intersection point, while k less than -2 results in no real solutions. Thus, the critical condition for intersection is k > -2.
confusedatmath
Messages
14
Reaction score
0
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = x^2 + x − 2 in two distinct points if

I first made the equations equal each other

x + k = x^2 + x − 2
0 = x^2 -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2
 
Mathematics news on Phys.org
confusedatmath said:
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = + x − 2 in two distinct points if

I first made the equations equal each other

x + k = + x − 2
0 = -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2

Hello.

Check the wording of the question. The parable, need that 'x' is not high to the power 1. (would be a straight line)

Regards.
 
mente oscura said:
Hello.

Check the wording of the question. The parable, need that 'x' is not high to the power 1. (would be a straight line)

Regards.
i fixed it :p read again, it was a mistake i forgot the x^2
 
confusedatmath said:
The line with equation y = x + k, where k is a real number, intersects the parabola with equation y = x^2 + x − 2 in two distinct points if

I first made the equations equal each other

x + k = x^2 + x − 2
0 = x^2 -2 -k

From here i thought you use the discriminate a=1 b=o c=-2-k

but this isn't right, because the answer to choose from

k < − 2

k > − 2

k = − 2

k < 2

k ≠ 2

Now yes.

0=x^2-2-k

x^2=k+2

x=\pm{} \sqrt{k+2}

1º) k&lt;-2 \rightarrow{}x \cancel{\in}{R}

2º) k&gt;-2 \rightarrow{}x \in{R}

3º) k=-2 \rightarrow{}x=0, only a breakpoint.

Regards.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top