LaTeX Introducing LaTeX Math Typesetting

Click For Summary
Physics Forums has integrated LaTeX mathematical typesetting into its platform, allowing users to create visually appealing mathematical expressions using markup similar to HTML. Users can include LaTeX graphics in posts by wrapping their code in [tex] or [itex] tags for display or inline formatting, respectively. A PDF guide with essential LaTeX commands and symbols is available, along with links to additional resources. The community is encouraged to experiment with the system and share examples, while also being mindful of server load when generating graphics. This addition aims to enhance the clarity and professionalism of mathematical discussions on the forum.
  • #511
Let the function f be continuos on the closed interval [a, b], and assume that f(x) \geq 0 for all x in [a, b]. If S is the solid of revolution obtained by revolving about the x axis the region bounded by the curve y = f(x), the x axis, and the lines x = a and x = b, and if V is the number of cubic units in the volume of S, then

V = \pi \int^b_{a}[f(x)]^2 dx
 
Last edited:
Physics news on Phys.org
  • #512
[ tex ] a^x_n [ /tex ]
 
  • #513
Just a test

a^_x
 
  • #514
I think we all know Taylor expansion:

\boxed{f\left( x \right) = \sum\limits_{n = 0}^\infty {\frac{{f^{\left( n \right)} \left( a \right)}}{{n!}}\left( {x - a} \right)^n } ,\left| {x - a} \right| < R}
 
  • #515
F_{1}+F{2}

just testing
 
Last edited:
  • #516
level: 1
<br /> \sum_{j=0}^m a + cj = \frac{(m + 1)(2a + cm)}{2}<br />

level: 2
<br /> \sum_{j=0}^m \frac{(j + 1)(2a + cj)}{2} = \frac{(m + 1)(m + 2)(3a + cm)}{6}\\<br />

level: 3
<br /> \sum_{j=0}^m \frac{(j + 1)(j + 2)(3a + cj)}{6} = \frac{(m + 1)(m + 2)(m + 3)(4a + cm)}{24}\\<br />

level: 4
<br /> \sum_{j=0}^m \frac{(j + 1)(j + 2)(j + 3)(4a + cj)}{24} = \frac{(m + 1)(m + 2)(m + 3)(m + 4)(5a + cm)}{120}\\<br />

level: n
<br /> = \frac{(m + n)!(a(n + 1) + cm)}{m!(n + 1)!}<br />

As product
<br /> \frac{(m + n)!(a(n + 1) + cm)}{m!(n + 1)!} = (a(n + 1) + cm) \prod_{j=1}^n \frac{m + j}{j + 1}<br />
 
  • #517
Did I mention Mathematica has an Eigenvector[Matrix] command? However, I'm not good at calculating eigenvectors so I really should do a few by hand:

The eigenvector equation is simple:

<br /> \mathbf{M}v=\lambda v<br />

So for:

<br /> \lambda_1=-1<br />

<br /> \left(<br /> \begin{array}{ccc} 1 &amp; 0 &amp; 3 \\<br /> 0 &amp; -1 &amp; 0 \\<br /> -3 &amp; 0 &amp; 1<br /> \end{array}<br /> \right)<br /> \left(<br /> \begin{array}{c} x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)=-1<br /> \left(<br /> \begin{array}{c} x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)<br />

So:

<br /> x+3z=-x\\<br /> -y=-y\\<br /> -3x+z=-z<br />

The middle one is easy:

<br /> 0y=0<br />

That means y can be anything so let y=1.
The other two:

<br /> 2x+3z=0<br /> -3x+2z=0<br />

The simple thing here, since we're looking for ANY eigenvector, is to just pick the zero solution and thus:

<br /> v_1=<br /> \left(<br /> \begin{array}{c} 0 \\<br /> 1 \\<br /> 0<br /> \end{array}<br /> \right)<br />

For:
<br /> \lambda_2=(1+3i)<br />

<br /> \left(<br /> \begin{array}{ccc} 1 &amp; 0 &amp; 3 \\<br /> 0 &amp; -1 &amp; 0 \\<br /> -3 &amp; 0 &amp; 1<br /> \end{array}<br /> \right)<br /> \left(<br /> \begin{array}{c} x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)=(1+3i)<br /> \left(<br /> \begin{array}{c} x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)<br />

So that's:

<br /> x+3z=(1+3i)x<br /> -y=(1+3i)y<br /> -3x+z=(1+3i)z<br />

For the middle one, the only way ay=y is if y=0. The other two yield:
<br /> 3z=3ix<br />

or:

z=ix

so let x=1 and z=i.

Thus:

<br /> v_2=<br /> \left(<br /> \begin{array}{c} 0 \\<br /> 1 \\<br /> 0<br /> \end{array}<br /> \right)<br />

Same dif for the other eigenvalue which yields:
<br /> v_3=<br /> \left(<br /> \begin{array}{c} 1 \\<br /> 0 \\<br /> -i<br /> \end{array}<br /> \right)<br />

Mathematica returns equivalent eigenvectors.
Thus we are led to the solution in matrix form:

<br /> \mathbf{x}=c_1e^{-t}<br /> \left(<br /> \begin{array}{c} 0 \\<br /> 1 \\<br /> 0<br /> \end{array}<br /> \right)+<br /> c_2e^{(1+3i)t}<br /> \left(<br /> \begin{array}{c} 1 \\<br /> 0 \\<br /> i<br /> \end{array}<br /> \right)+<br /> c_3e^{(1-3i)t}<br /> \left(<br /> \begin{array}{c} 1 \\<br /> 0 \\<br /> -i<br /> \end{array}<br /> \right)<br />

You ever work a problem and the answer is just as difficult as the question?
 
Last edited:
  • #518
After reviewing, I wish to clear up two points in my efforts to solve this equation:

1. There is no need to directly calculate the eigenvector of \lambda_3:

The complex conjugate of an eigenvector for \lambda_2 is an eigenvector for \lambda_3[/tex].<br /> <br /> So above I calculated the eigenvector for (1+3i) to be:<br /> <br /> v_2=\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)<br /> <br /> Therefore to calculate the eigenvector for (1-3i), conjugate the eigenvector for (1+3i)[/tex]:&lt;br /&gt; &lt;br /&gt; If:&lt;br /&gt; &lt;br /&gt; v_2=\left(\begin{array}{c} 1+0i \\0+0i \\0+i\end{array}\right)&lt;br /&gt; &lt;br /&gt; Then:&lt;br /&gt; &lt;br /&gt; \overline{v_2}=v_3=\left(\begin{array}{c} 1-0i \\0-i \\0-i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\-i\end{array}\right)&lt;br /&gt; &lt;br /&gt; See how that works?&lt;br /&gt; &lt;br /&gt; Ok that&amp;#039;s one.&lt;br /&gt; &lt;br /&gt; 2. The complex eigenvalues both yield the same solution! That is, the solution from (1+3i) is the same solution as that from (1-3i). Go figure. I did. So that&amp;#039;s the reason we only need calculate the Real and Complex contribution from ONE member of each complex pair. And also, it&amp;#039;s VERY convenient to write the eigenvectors as:&lt;br /&gt; &lt;br /&gt; \left(\begin{array}{c} 1 \\0 \\-i\end{array}\right)=\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)&lt;br /&gt; &lt;br /&gt; Alright, so let&amp;#039;s compute the Real part and the Complex part for:&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; \begin{align*}&amp;lt;br /&amp;gt; e^{(1+3i)t}\left(\begin{array}{c} 1 \\0 \\i\end{array}\right)&amp;lt;br /&amp;gt; &amp;amp;amp;=e^{(1+3i)t}\left[\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\&amp;lt;br /&amp;gt; &amp;amp;amp;=e^t\left[(Cos(3t)+iSin(3t))\left\{\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+&amp;lt;br /&amp;gt; i\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}\right] \\&amp;lt;br /&amp;gt; &amp;amp;amp;=e^t\left[Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)+iCos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+iSin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right] \\&amp;lt;br /&amp;gt; &amp;amp;amp;=e^t\left[C_1\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+C_2\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right]&amp;lt;br /&amp;gt; \end{align}&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; This with the first solution then yields the general solution:&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; \begin{align*}&amp;lt;br /&amp;gt; \mathbf{X}&amp;amp;amp;=C_1e^{-t}\left(\begin{array}{c} 0 \\1 \\0\end{array}\right) \\&amp;lt;br /&amp;gt; &amp;amp;amp;+e^t\left[C_2\left\{Cos(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)-Sin(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)\right\}+C_3\left\{Cos(3t)\left(\begin{array}{c} 0 \\0 \\1\end{array}\right)+Sin(3t)\left(\begin{array}{c} 1 \\0 \\0\end{array}\right)\right\}\right]&amp;lt;br /&amp;gt; \end{align}&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; That&amp;#039;s read as:&lt;br /&gt; &lt;br /&gt; x(t)=C_2e^tCos(3t)+C_3e^tSin(3t)&lt;br /&gt; &lt;br /&gt; y(t)=C_1e^{-t}&lt;br /&gt; &lt;br /&gt; z(t)=-C_2e^tSin(3t)+C_3e^tCos(3t)
 
Last edited:
  • #519
avg=\frac{n_1+n_2+n_3+n_4+n_5}{n}dv_n=average-reading_n
\delta=\sqrt{\frac{dv_1^2+dv_2^2+dv_3^2+dv_4^2+dv_5^2}{n-1}}
\delta_{avg}=\frac{\delta}{\sqrt{n}}v_n=\frac{d_n}{t_n}\Delta v_n=v_n\sqrt{(\frac{\Delta L}{l})^2+(\frac{\Delta t_n}{t_n})^2}\rho_n=m_n(\frac{3}{4\pi})(\frac{d_n}{2})^{-3}\Delta\rho_n=6\sqrt{\frac{9\Delta d_n^2m_n^2}{\pi^2d_n^8}+\frac{\Delta m_n^2}{\pi^2d_n^6}}

\eta_n=(\frac{2g}{9v_n})(\frac{d_n}{2})^2(\rho_n-\rho_l)
 
Last edited by a moderator:
  • #520
\Delta\eta_n=\frac{2}{9}\sqrt{\frac{4\Delta r_n^2g^2r_n^2(\rho_n-\rho_l)^2}{v_n^2}+\frac{\Delta\rho_n^2g^2r_n^4}{v_n^2}+\frac{\Delta g^2r_n^4(\rho_n-\rho_l)^2}{v_n^2}+\frac{\Delta\rho_l^2g^2r_n^4}{v_n^2}+\frac{\Delta v_n^2g^2r_n^4(\rho_n-\rho_l)^2}{v_n^4}}
 
  • #521
m_{avg}=\frac{19.837+19.839+19.840+19.841+19.840}{5}=19.84 g

v_G=\frac{0.50}{24.25}= 0.0206 m/s

\rho_G=0.01984(\frac{3}{4\pi})(\frac{0.02451}{2})^{-3}= 2573 kg/m^3

\eta_G=(\frac{2g}{9(0.0206)})(\frac{0.02451}{2})^2(2573-1013)= 24.77 kg/ms
 
Last edited by a moderator:
  • #522
dv_1=24.51-24.70= -0.19 mm
dv_2=24.51-24.40= 0.11 mm
dv_3=24.51-24.44= 0.07 mm
dv_4=24.51-24.32= 0.19 mm
dv_5=24.51-24.68= -0.17mm
\delta_G=\sqrt{\frac{-0.19^2+0.11^2+0.07^2+0.19^2+-0.17^2}{5-1}}= 0.1718 mm
\delta_{avg of G}=\frac{0.1718}{\sqrt{5}}= 0.07683 mm

\Delta v_G=0.0206\sqrt{(\frac{0.003}{0.50})^2+(\frac{\0.1566}{24.25})^2}= 0.00018 m/s

\Delta\rho_G=6\sqrt{\frac{9(0.00007683)^2(0.01984)^2}{\pi^20.02451^8}+\frac{0.00005^2}{\pi^20.02451^6}}= 25.05 kg/m^3
 
Last edited by a moderator:
  • #523
\heartsuit I LOVE YOU ALEX \heartsuit
 
  • #524
\Delta\eta_G=\frac{2}{9}\sqrt{\frac{4(0.000038415)^2(9.8)^2(0.012255)^2(2573-1013)^2}{0.0206^2}+\frac{(25.05)^2(9.8)^2(0.012255)^4}{0.0206^2}

\sqrt{adfsadfasf+\frac{(0.005)^2(0.012255)^4(2573-1013)^2}{0.0206^2}+\frac{(5)^2(9.8)^2(0.012255)^4}{0.0206^2}<br /> +\frac{(0.00018)^2(9.8)^2(0.012255)^4(2573-1013)^2}{0.0206^4}}= 0.4854 kg/ms}
 
Last edited by a moderator:
  • #525
sorry everyone.. just testing for a lab report
 
  • #526
First, let's clean up the functional: Really, if we want to minimize that integral, we can just move U across the integral sign right, and let's put the exponential in the numerator:

\mathbf{T}[y(x)]=\frac{1}{U}\int_{p_1}^{p_2} e^{y/h}\sqrt{1+(y^{&#039;})^2}dx


So:

F(x,y,y^{&#039;})=e^{y/h}\sqrt{1+(y^{&#039;})^2}

and therefore:

\frac{\partial F}{\partial y}=\frac{e^{y/h}\sqrt{1+(y^{&#039;})^2}}{h}

and:

\frac{\partial F}{\partial y^{&#039;}}=\frac{e^{y/h}y^{&#039;}}{\sqrt{1+(y^{&#039;})^2}}

and so:

<br /> \begin{align*}<br /> \frac{d}{dx}\left(\frac{\partial F}{\partial y^{&#039;}}\right)&amp;=\frac{d}{dx}\left[\frac{e^{y/h}y^{&#039;}}{\sqrt{1+(y^{&#039;})^2}}\right] \\<br /> <br /> &amp;=\frac{d}{dx}\left[e^{y/h}y^{&#039;} \cdot \frac{1}{\sqrt{1+(y^{&#039;})^2}}\right] \\<br /> <br /> &amp;=\left[e^{y/h}y^{&#039;}\cdot\frac{-1/2}{(1+(y^{&#039;})^2)^{3/2}}\cdot 2 y^{&#039;}y^{&#039;&#039;} \\<br /> <br /> &amp;+\frac{1}{\sqrt{1+(y^{&#039;})^2}}\left(e^{y/h}y^{&#039;&#039;}+y^{&#039;}\frac{1}{h}y^{&#039;}e^{y/h}\right) \\<br /> <br /> &amp;=\frac{e^{y/h}y^{&#039;&#039;}}{\sqrt{1+(y^{&#039;})^2}}-\frac{e^{y/h}(y^{&#039;})^2y^{&#039;&#039;}}{(1+(y^{&#039;})^2)^{3/2}}+<br /> \frac{e^{y/h}(y^{&#039;})^2}{h\sqrt{1+(y^{&#039;})^2}}<br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> \end{align}<br />

So, once we obtain the partials, then we substitute them into the Euler equation and equate the expression to zero. Now, can you please substitute these expressions into:

\frac{\partial F}{\partial y}-\frac{d}{dx}\left(\frac{\partial F}{\partial y^{&#039;}}\right)=0

and post the results?

Also, with regards to h=1: I just worked the problem with that value and obtained the results you indicated. Perhaps it works for any value of h. Not sure.
 
Last edited:
  • #527
\heartsuit I\; Love\; You\; Alex! \heartsuit
 
  • #528
\Delta\eta_G=\frac{2}{9}\sqrt{\frac{4(0.000038415) ^2(9.8)^2(0.012255)^2(2573-1013)^2}{0.0206^2}+\frac{(25.05)^2(9.8)^2(0.012255 )^4}{0.0206^2}+\frac{(0.005)^2(0.012255)^4(2573-1013)^2}{0.0206^2}+\frac{(5)^2(9.8)^2(0.012255)^4} {0.0206^2}+\frac{(0.00018)^2(9.8)^2(0.012255)^4(2573-1013)^2}{0.0206^4}}= 0.4854 kg/ms}
 
  • #529
\overrightarrow{F_f}=-6\pi\eta(\frac{d}{2})\overrightarrow{v}

\overrightarrow{mg}=\frac{4}{3}\pi(\frac{d}{2})^3\rho_s\overrightarrow g

\overrightarrow{F_b}=-\frac{4}{3}\pi(\frac{d}{2})^3\rho_l\overrightarrow g

\overrightarrow{F_b}+\overrightarrow{F_f}+\overrightarrow{mg} = 0
 
Last edited by a moderator:
  • #530
avg=\frac{x_1+x_2+x_3+...+x_n}{n}
 
  • #531
test

<br /> \int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}<br />
Let \theta be a (p+1)-form defined on the ranges of all the cubes of a p-chain, where p>0. Then \int_{C} d \theta = \int_{\partial C} \theta
<br /> Let\; \theta\; be\; a (p+1)-form\; defined\; on\; the\; ranges\; of\; all\; the\; cubes\; of\; a\; p-chain,\; where\; p&gt;0.\; Then \int_{C} d \theta = \int_{\partial C} \theta.<br />
 
Last edited:
  • #532
e=\frac{f}{a}
e=\sqrt{1-\frac{b^2}{a^2}}
 
  • #533
\bigoplus



asdf
 
  • #534
F_b=m_ba_b
F_e=m_ea_e
F_b=F_e
m_ba_b=m_ea_e
\frac{m_b}{m_e}=\frac{a_e}{a_b}
 
  • #535
s

\nabla \cross E=0
\nabla \cdot E =\frac {\rho}{\epsilon_0}

abc
 
Last edited:
  • #536
Taken \sum F = m_1 \cdot a
We have \sum F_x = m_1 \cdot a_x and \sum F_y = m_1 \cdot a_y
With a_y = 0
We We have \sum F_x = m_1 \cdot a_x and \sum F_y = 0
So T = m_1 \cdot a_x
Taken \sum F = m_2 \cdot a
We have \sum F_y = m_2 \cdot a_y
Which is m_2 \cdot g - T = m_2 \cdot a
Inserting T = m_1 \cdot a_x into m_2 \cdot g - T = m_2 \cdot a and solving for a,
We get a = \frac {m_2 \cdot g} {m_1 + m_2}
Inserting this into T = m_1 \cdot a,
we get T = \frac {m_1 \cdot m_2 \cdot g} {m_1 = m_2}Now, taken v^2 = v_0^2 + 2a\deltax
 
Last edited:
  • #537
Taken \sum F = m_1 \cdot a
We have \sum F_x = m_1 \cdot a_x and \sum F_y = m_1 \cdot a_y
With a_y = 0
We We have \sum F_x = m_1 \cdot a_x and \sum F_y = 0
So T = m_1 \cdot a_x
Taken \sum F = m_2 \cdot a
We have \sum F_y = m_2 \cdot a_y
Which is m_2 \cdot g - T = m_2 \cdot a
Inserting T = m_1 \cdot a_x into m_2 \cdot g - T = m_2 \cdot a and solving for a,
We get a = \frac {m_2 \cdot g} {m_1 + m_2}
Inserting this into T = m_1 \cdot a,
we get T = \frac {m_1 \cdot m_2 \cdot g} {m_1 = m_2}


Now, taken v^2 = v_0^2 + 2a\delta x
 
  • #538
Taken \sum F = m_1 \cdot a
We have \sum F_x = m_1 \cdot a_x and \sum F_y = m_1 \cdot a_y
With a_y = 0
We We have \sum F_x = m_1 \cdot a_x and \sum F_y = 0
So T = m_1 \cdot a_x
Taken \sum F = m_2 \cdot a
We have \sum F_y = m_2 \cdot a_y
Which is m_2 \cdot g - T = m_2 \cdot a
Inserting T = m_1 \cdot a_x into m_2 \cdot g - T = m_2 \cdot a and solving for a,
We get a = \frac {m_2 \cdot g} {m_1 + m_2}
Inserting this into T = m_1 \cdot a,
we get T = \frac {m_1 \cdot m_2 \cdot g} {m_1 + m_2}
Now, taken v^2 = v_0^2 + 2a\Delta x
Solving for a we get a = \frac {v^2 - V_0^2} {2\Delta x}
Taking that \Delta x = .5 and v_0 = 0
We have a = \frac {v^2} {meters*}
Now a_exp stands for experimental value of a
and a_t [/tex[ stands for theoretical value of a<br /> so a_exp = \frac {v^2} {meters*}<br /> and a_t = \frac {m_2 \cdot g} {m_1 + m_2}<br /> * meters is added so units sovle correctly.
 
  • #539
Taken \sum F = m_1 \cdot a
We have \sum F_x = m_1 \cdot a_x and \sum F_y = m_1 \cdot a_y
With a_y = 0
We We have \sum F_x = m_1 \cdot a_x and \sum F_y = 0
So T = m_1 \cdot a_x
Taken \sum F = m_2 \cdot a
We have \sum F_y = m_2 \cdot a_y
Which is m_2 \cdot g - T = m_2 \cdot a
Inserting T = m_1 \cdot a_x into m_2 \cdot g - T = m_2 \cdot a and solving for a,
We get a = \frac {m_2 \cdot g} {m_1 + m_2}
Inserting this into T = m_1 \cdot a,
we get T = \frac {m_1 \cdot m_2 \cdot g} {m_1 + m_2}
Now, taken v^2 = v_0^2 + 2a\Delta x
Solving for a we get a = \frac {v^2 - V_0^2} {2\Delta x}
Taking that \Delta x = .5 and v_0 = 0
We have a = \frac {v^2} {meters*}
Now a_exp stands for experimental value of a
and a_t stands for theoretical value of a
so a_exp = \frac {v^2} {meters*}
and a_t = \frac {m_2 \cdot g} {m_1 + m_2}
* meters is added so units sovle correctly.
 
  • #540
I've achieved oneness with the integral Tide . . . Here it is with your scalling factor in case other people are following this:

Above, after letting:

\sigma^2=s

and completing the square, we obtain:

2e^{-\pi/t}\int e^{t(\sigma-\sqrt{\pi}/t)^2}\sigma d\sigma

Now, in order to remove the t in the exponent, we let:

v=\sqrt{t}\sigma

so that:

dv=\sqrt{t}d\sigma,\quad \sigma=\frac{v}{\sqrt{t}},\quad d\sigma=\frac{dv}{\sqrt{t}}

Substituting this scalling factor into the exponent:

<br /> \begin{align*}<br /> t\left[\frac{v^2}{t}-\frac{2v\sqrt{\pi}}{t\sqrt{t}}+\frac{\pi}{t^2}\right]&amp;=<br /> v^2-2v\sqrt{\pi/t}+\frac{\pi}{t} \\<br /> &amp;=(v-\sqrt{\pi/t})^2<br /> \end{align}<br />

substituting this into the integral:

2e^{-\pi/t}\int e^{(v-\sqrt{\pi/t})^2}\left(\frac{v}{\sqrt{t}}\right)\frac{dv}{\sqrt{t}}

Simplifying:

2\frac{e^{-\pi/t}}{t}\int e^{(v-\sqrt{\pi/t})^2}dv;\quad v=\sqrt{t}\sigma;\quad \sigma^2=s
 
Last edited:

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K