KaneOris
- 113
- 0
Speed of Satellite
v = \frac {2\pi R}{T}
Acceleration of a Satellite in Orbit
a = \frac {v^2}{R} = \frac {4\pi^2R}{T^2} = \frac {GM}{R^2} = g
Gravitational force on body in Orbit
F_g = mg = \frac {mv^2}{R} = \frac {4\pi^2Rm}{T^2} = \frac {GMm}{R^2} = g
Gravitational Constant G
G = 6.67\times10^{-11} N m^2 kg^{-2}
Motion at uniform acceleration
x = \frac {u+v}{2}t
v = u + at
x = ut + \frac {at^2}{2}
x = vt - \frac {at^2}{2}
v^2 = u^2 + 2ax
Newtons 2nd Law
\sum{F} = ma
Inclined Plane
a = g\sin\theta
Momentum & Impulse
\Delta{p} = m\Delta{v} = \sum{F\Delta{t}} = I
Kinetic Energy
E_k = \frac {mv^2}{2}
Potential Grav Energy
U_g = mgh
Work
Fx\cos\theta
Hooke's Law
F_s = -kx
v = \frac {2\pi R}{T}
Acceleration of a Satellite in Orbit
a = \frac {v^2}{R} = \frac {4\pi^2R}{T^2} = \frac {GM}{R^2} = g
Gravitational force on body in Orbit
F_g = mg = \frac {mv^2}{R} = \frac {4\pi^2Rm}{T^2} = \frac {GMm}{R^2} = g
Gravitational Constant G
G = 6.67\times10^{-11} N m^2 kg^{-2}
Motion at uniform acceleration
x = \frac {u+v}{2}t
v = u + at
x = ut + \frac {at^2}{2}
x = vt - \frac {at^2}{2}
v^2 = u^2 + 2ax
Newtons 2nd Law
\sum{F} = ma
Inclined Plane
a = g\sin\theta
Momentum & Impulse
\Delta{p} = m\Delta{v} = \sum{F\Delta{t}} = I
Kinetic Energy
E_k = \frac {mv^2}{2}
Potential Grav Energy
U_g = mgh
Work
Fx\cos\theta
Hooke's Law
F_s = -kx
