Introduction to 'Real' Math (i.e. number theory etc,)

AI Thread Summary
The discussion centers on finding approachable math books that effectively introduce foundational concepts, such as set theory and number theory, while emphasizing the construction of mathematics through axioms, proofs, and theorems. Participants express a desire for texts that are conversational in tone yet rigorous enough to convey the logical structure of mathematics. Recommendations include "Concepts in Modern Mathematics" by Ian Stewart, "Foundations of Mathematics" by Stewart and Tall, and "What is Mathematics?" by Richard Courant. The William Chen lecture notes are highlighted as an excellent online resource for progressing from basic to advanced mathematical topics. Other suggested titles include Landau's work on natural numbers and "The Principles of Mathematics" by Allendoerfer and Oakley, which starts conversationally before delving into proofs. The conversation reflects a shared interest in accessible yet rigorous mathematical literature for those with limited backgrounds in the subject.
maverick_starstrider
Messages
1,118
Reaction score
7
Hi,

I'm basically looking for a book that is very approachable and written for someone who knows very little about math but that goes through actual math, i.e. starts with set theory, then constructs the natural numbers, the integers, yada yada and strongly emphasizes how math is constructed from axiom ->proof -> theorem and so on. It'd be great if it was more layed back and written in a conversational tone and walks a person through such things.
 
Physics news on Phys.org
Aren't books that are "layed back and written in a conversational tone" usually mutually exclusive to books that "strongly emphasize how math is constructed from axiom -> proof -> theorem and so on" (although I suspect you meant axiom -> theorem -> proof)?
 
I hope not. I've seen books that are pretty close, like 'concepts in modern mathematics' by ian stewart. You can emphasize the importance of proofs and construction without be dense, pedantic and unapproachable.
 
Try 'Foundations of Mathematics' by Stewart and Tall.
 
maverick_starstrider said:
Hi,

I'm basically looking for a book that is very approachable and written for someone who knows very little about math but that goes through actual math, i.e. starts with set theory, then constructs the natural numbers, the integers, yada yada and strongly emphasizes how math is constructed from axiom ->proof -> theorem and so on. It'd be great if it was more layed back and written in a conversational tone and walks a person through such things.

learn Discrete Mathematics, I think that fits perfectly with what you described
 
Yes, I'm looking for a number theory book (which is part of discrete math) that is approachable to a layman. Basically I'd like a book to recommend for someone who maybe have some high school math and who in general distrusts math and thinks it's just a bunch of "formulas" that are made up, or determined experimentally or something and I'd like them to see how math is a constuction of logic built up from axioms and i'd like a book that would actually walk them through the basics of number theory.
 
I'd write something myself but you'd think there'd be plenty of books that already do something like this.
 
Probably the best math resource on the internet is the WILLIAM CHEN lecture notes http://www.maths.mq.edu.au/~wchen/ln.html"

From here, you can go from set/number theory to more advanced topics like complex analysis. Fairly rigorous.
 
Last edited by a moderator:
Pinu7 said:
Probably the best math resource on the internet is the WILLIAM CHEN lecture notes http://www.maths.mq.edu.au/~wchen/ln.html"

From here, you can go from set/number theory to more advanced topics like complex analysis. Fairly rigorous.

Wow. That's awesome
 
Last edited by a moderator:
  • #10
“What is the mathematics” by Richard Courant is the best I think!
 
  • #11
Thanks for the thread, guys. I was wondering something similar, and I think I may have my answer- I have been looking for a while for an introduction to rigorous mathematical thought, and what higher math is really like, for someone with just a high school/ some calculus background to get a glimpse of the real thing. So I'm giving this thread a bump, and any more thoughts would be great! thanks.
 
  • #12
MIT's openware is quite entertaining and it is free.
 
  • #13
mathematicsma said:
Thanks for the thread, guys. I was wondering something similar, and I think I may have my answer- I have been looking for a while for an introduction to rigorous mathematical thought, and what higher math is really like, for someone with just a high school/ some calculus background to get a glimpse of the real thing. So I'm giving this thread a bump, and any more thoughts would be great! thanks.

by Landau is a book that completely develops the natural numbers, the rationals, the reals, and the complex numbers from the Peano Axioms. It's one of the most terse math books you'll ever read and it's typeset horribly, but if you want rigor for all things arithmetic that are always taken for granted and you want it done in an axiom->lemma->proof format, this book absolutely delivers.

If you had a lot of calculus background I would recommend Baby Rudin (Principles of Mathematical Analysis) so you could learn something more useful, but I wouldn't advise going into it until you've completed an entire university calculus sequence (through Stokes' Theorem) and a maybe a linear algebra class that had a little bit of theory in it.

Landau won't require any specific knowledge to complete though; you just have to be a very attentive reader. I personally think intuition and visualization are a hell of a lot more important than rigor when it comes to math, but rigor has its place when you're checking your ideas and communicating them.
 
Last edited by a moderator:
  • #14
  • #15
"Fundamentals of Mathematics." By Moses Richardson. 1960's ed., Newer edition (70's, I think) in collaboration with Leonard Richardson (Moses' son, I presume.) Long out of print, available used through Amazon $14.95 or thereabouts. This book is described exactly by your request, and, as an extra, is a pleasure to read.
 
  • #16
I didn't know about these. I'll have to check them out. I've been looking for "Fundamentals of Mathematics" in my local library but haven't been able to find it.

--
 
Last edited by a moderator:
  • #17
Pinu7 said:
Probably the best math resource on the internet is the WILLIAM CHEN lecture notes http://www.maths.mq.edu.au/~wchen/ln.html"

From here, you can go from set/number theory to more advanced topics like complex analysis. Fairly rigorous.

This set of notes is absolutely fantastic. What a gem you've shared. Thank you very much for this recommendation.It's quite difficult to find pre-calculus material presented in an intelligible and fairly rigorous manner, but these lectures seem to do just that. I only wish there were more material.
 
Last edited by a moderator:
  • #18
I recently came across https://www.amazon.com/gp/product/048643480X/?tag=pfamazon01-20 By Felix Klein. Does anyone have any opinions on this book? It's part of the Dover Series on Mathematics which I consider to be a handy little set of books; I'm just not sure if this is something that people looking for a fairly rigorous approach to "elementary" maths may be interested in.
 
Last edited by a moderator:
  • #19
Wow, I've only looked through the Complex Analysis notes, but from what I see, William Chen's notes are extremely well written, succint, and includes plenty of problems at the end! Excellent resource!
 
  • #20
There's one book that I know of that's laid out exactly how you have said in your OP. I'm sure you know about it. "The Principles of Mathematics by Allendoerfer and Oakley. At the beginning it definitely starts out conversational as it introduces basic mathematical logic and set theory but gets into the nitty gritty of proofs later on.

From what I can tell, a lot of the same titles pop up whenever someone asks a question like this (I have most the books that have been mentioned in this thread for example). So I'd like to know what else it out there as well.
 
Back
Top