- #1
center o bass
- 560
- 2
In the book "Statistical physics for cosmic structures" at p. 171 a read a definition of scale invariance (leading to the so called scale invariant power spectrum) given as the requirement that ##\sigma^2_M(R=R_H(t)) = constant##, where ##R_H(t)## is the horizon, i.e. the maximal distance that light could have traveled in cosmological time ##t##.
In other words, the normalised mass variance over a sphere of radius the horizon distance should be independent of time. So if we computed the mass variance at some time ##t_0## when the horizon was ##R_H(t_0)## this should be the same as if we computed it at any other ##t_1## when the horizon was ##R_H(t_1)## even though ##R_H(t_0)## might be much smaller than ##R_H(t_1)##.
I am trying to get intuition for why one would believe such a requirement to be true. Does anyone have some enlightening explanations/insights?
In other words, the normalised mass variance over a sphere of radius the horizon distance should be independent of time. So if we computed the mass variance at some time ##t_0## when the horizon was ##R_H(t_0)## this should be the same as if we computed it at any other ##t_1## when the horizon was ##R_H(t_1)## even though ##R_H(t_0)## might be much smaller than ##R_H(t_1)##.
I am trying to get intuition for why one would believe such a requirement to be true. Does anyone have some enlightening explanations/insights?