Invariant mass and energy balance

AI Thread Summary
The discussion focuses on calculating the invariant mass of a two-particle system involving a proton and a photon from the Cosmic Microwave Background (CMB). Participants work through the equations related to energy and momentum conservation in high-energy collisions, specifically the reaction p + γ → ∆+. A key point of confusion arises in deriving the expression for the proton's energy, where one participant struggles to eliminate terms and simplify their equation. Another participant provides a helpful algebraic approach that leads to the correct formulation, emphasizing the importance of combining equations effectively. The conversation highlights the complexities of special relativity and the application of invariant mass in particle physics.
R3ap3r42
Messages
30
Reaction score
3
Homework Statement
This is a question from a Special Relativity course. Uses invariant mass, Laurentz Transformation
Relevant Equations
Invariant mass, Lorentz Transformation, Conservation of Energy, Conservation of Momentum
a) Two particles have energies E1 and E2, and momenta p1 and p2. Write down an expression for the invariant mass of this two-particle system. Leave your answer in terms of E1 and E2, and p1 and p2.

b) A typical photon (γ) in the Cosmic Microwave Background (CMB) has an energy of kBTCMB, where TCMB = 2.73 K and kB is the Boltzmann constant. Such a photon can collide with a high-energy proton via the reaction p + γ → ∆+, where the ∆+ particle has a mass of 1.23 GeV/c2 .

i) Calculate the energy of the CMB photon in eV. [2 marks]

ii) If the proton and photon collide head-on, show that their invariant mass, $$ M_{inv} $$, satisfies

$$ M_{inv}^2 c^4 = m_p^2 c^4 + 2k_B T_{CMB} (E + cp) $$

where E, p and mp are the proton’s energy, momentum and mass. [4 marks] Hence show that the proton energy can be written

$$ E= \frac {m_∆^2 c^4−m_p^2 c^4} {4k_BT_{CMB}}+δE $$ and determine δE in terms of the particle masses and the photon energy.

iii) Compute the numerical values of δE and E in eV. [2 marks] iv) How would your expression for the proton energy change if the photon and proton collided at right angles?I got all the way to b) ii but I could not get to the given expression for E.
Can anyone point give me any clues? I am pretty sure it's just algebraic work that I can seem to simplify.

I manage to get to this:

$$ E= \frac {m_∆^2 c^4−m_p^2 c^4} {2k_BT_{CMB}} - cp $$

This seems close but I can't get rid of the cp (also note that mine is divided by 2 not 4 as expected).

Thanks a lot.
 
Physics news on Phys.org
R3ap3r42 said:
Homework Statement:: This is a question from a Special Relativity course. Uses invariant mass, Laurentz Transformation
Relevant Equations:: Invariant mass, Lorentz Transformation, Conservation of Energy, Conservation of Momentum

I got all the way to b) ii but I could not get to the given expression for E.
Show your work please.
 
1642958354075.png


Hope it is clear enough.
 
R3ap3r42 said:
I manage to get to this:

$$ E= \frac {m_∆^2 c^4−m_p^2 c^4} {2k_BT_{CMB}} - cp $$

This seems close but I can't get rid of the cp (also note that mine is divided by 2 not 4 as expected).

Thanks a lot.
You're missing the same trick I showed you yesterday. You have:
$$E + pc = X \ \ (1)$$where$$X = \frac {m_∆^2 c^4−m_p^2 c^4} {2k_BT_{CMB}}$$Now$$m_p^2c^4 = E^2 - p^2c^2 = (E-pc)(E+pc) = (E-pc)X$$$$\Rightarrow \ E - pc = \frac{m_p^2c^4}{X} \ \ (2)$$Now, add equations (1) and (2).
 
Wow! This is unbelievable. I was blind and now I see. :)
I guess a need to do 100 more of these.

Thanks a lot!
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top