Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Invariant quantities in the EM field

  1. Jan 23, 2007 #1

    Mentz114

    User Avatar
    Gold Member

    I understand that the quantities

    [tex]E^2 - B^2[/tex]

    [tex]\vec{E} \cdot \vec{B}[/tex]

    (the dot is vector inner product).
    where E and B are the electric and magnetic components of an EM wave,
    are invariant under Lorentz/Poincare transformations.
    Can someone explain the physical significance of this ? Is either quantity related to the velocity of light ( or the invariance of the velocity of light ) ?

    The second expression must be zero at all times surely ?
     
    Last edited: Jan 23, 2007
  2. jcsd
  3. Jan 24, 2007 #2

    dextercioby

    User Avatar
    Science Advisor
    Homework Helper

    Not necessarily wave. An EM wave is just a particular case of a radiated EM field. That's why the scalar product is not always 0, because the radiated EM field is not always a wave.

    There's not too much physical significance of the invariants, just that the first one is good for a lagrangian density since it leads to field equations second order in time.

    Daniel.
     
  4. Jan 24, 2007 #3

    Mentz114

    User Avatar
    Gold Member

    Thanks, Daniel.

    I didn't know there are solutions to Maxwells equations other than the EM wave.

    It's hard getting my head around the idea that the E and B fields 'mix' like space and time, when boosted.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Invariant quantities in the EM field
Loading...