SwordSmith
- 7
- 0
I am having problem with the inverse transformation of a Fourier transformed function which should give the function itself.
Let
f=f(x) and let f be Fourier transformable (whatever that implies)
Let
\tilde{f}(k)=∫^{\infty}_{-\infty}dx e^{-ikx}f(x) (1)
then we should have:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}f(k) (2)
This implies:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}∫^{\infty}_{-\infty}dx' e^{-ikx'}f(x') (3)
Note that x'≠x
My solution is as follows:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}∫^{\infty}_{-\infty}dx' e^{-ikx'}f(x') (4)
f(x)=∫^{\infty}_{-\infty}dk ∫^{\infty}_{-\infty}dx' e^{-ik(x'-x)}f(x') (5)
f(x)=∫^{\infty}_{-\infty}dx' ∫^{\infty}_{-\infty}dk e^{-ik(x'-x)}f(x') (6)
f(x)=∫^{\infty}_{-\infty}dx' δ(x'-x)f(x') (7)
f(x)=f(x) (8)
Is this correct? Step (6) to (7) bothers me. And what about the change in integration variables? I guess that is correct as well?
Let
f=f(x) and let f be Fourier transformable (whatever that implies)
Let
\tilde{f}(k)=∫^{\infty}_{-\infty}dx e^{-ikx}f(x) (1)
then we should have:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}f(k) (2)
This implies:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}∫^{\infty}_{-\infty}dx' e^{-ikx'}f(x') (3)
Note that x'≠x
My solution is as follows:
f(x)=∫^{\infty}_{-\infty}dk e^{ikx}∫^{\infty}_{-\infty}dx' e^{-ikx'}f(x') (4)
f(x)=∫^{\infty}_{-\infty}dk ∫^{\infty}_{-\infty}dx' e^{-ik(x'-x)}f(x') (5)
f(x)=∫^{\infty}_{-\infty}dx' ∫^{\infty}_{-\infty}dk e^{-ik(x'-x)}f(x') (6)
f(x)=∫^{\infty}_{-\infty}dx' δ(x'-x)f(x') (7)
f(x)=f(x) (8)
Is this correct? Step (6) to (7) bothers me. And what about the change in integration variables? I guess that is correct as well?