Inverse Function Thm. and Covering Maps.

WWGD
Science Advisor
Homework Helper
Messages
7,678
Reaction score
12,342
Hi, All:

Let ## f: X → Y ## be a differentiable map , so that ## Df(x)≠0 ## for all ##x## in ##X##. Then the inverse function
theorem guarantees that every point has a neighborhood where ##f ## restricts to a homeomorphism.

Does anyone know the conditions under which conditions a map like above is a covering map? I'm thinking of the case of the complex exponential ## e^z ## , with ##d/dz(e^z)=e^z ≠0## which is a covering map ## \mathbb C^2 → (\mathbb C-{0} ) ## , but I can't tell if the condition ## df(x)≠ 0 ## is enough to guarantee that ##f ## is a covering map, nor what conditions would make ##f ## into a covering map.

Thanks for any Ideas.
 
Physics news on Phys.org
Thanks, Mathwonk.
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top