John Creighto
- 487
- 2
According go Wikipedia the inverse Laplace Transform is given by:
\mathcal{L}^{-1} \{F(s)\} = f(t) = \frac{1}{2\pi i}\lim_{T\to\infty}\int_{\gamma-iT}^{\gamma+iT}e^{st}F(s)\,ds,
How do you probe this? I'm surprised that it doesn't depend on the value of \gama
http://en.wikipedia.org/wiki/Inverse_Laplace_transform
\mathcal{L}^{-1} \{F(s)\} = f(t) = \frac{1}{2\pi i}\lim_{T\to\infty}\int_{\gamma-iT}^{\gamma+iT}e^{st}F(s)\,ds,
How do you probe this? I'm surprised that it doesn't depend on the value of \gama
http://en.wikipedia.org/wiki/Inverse_Laplace_transform