Ionizing particles (alpha & beta)

Click For Summary
SUMMARY

This discussion focuses on the ionization mechanisms of alpha and beta particles, as well as gamma rays. Alpha particles, lacking electrons, are highly reactive and can strip electrons from atoms they encounter. Beta particles, specifically β^- (electrons) and β^+ (positrons), can ionize atoms by transferring kinetic energy to bound electrons, potentially leading to their ejection. Gamma rays, with energies exceeding 100 keV, can ionize atoms through processes such as the photoelectric effect, where absorbed photons can dislodge electrons from their atomic orbits.

PREREQUISITES
  • Understanding of ionization processes in physics
  • Familiarity with particle physics terminology, including alpha, beta, and gamma radiation
  • Knowledge of the Bethe-Bloch formula for energy loss calculations
  • Basic concepts of scattering theory and Coulomb interactions
NEXT STEPS
  • Study the Bethe-Bloch formula for calculating energy loss in ionization
  • Research the photoelectric effect and its role in photon-induced ionization
  • Explore the principles of scattering theory in particle physics
  • Investigate the mechanisms of bremsstrahlung and its significance in radiation interactions
USEFUL FOR

Physicists, radiation safety professionals, and students studying nuclear physics or radiation biology will benefit from this discussion on ionizing particles and their interactions with matter.

pfalk
Messages
11
Reaction score
0
I think I understand the impact that an alpha particle can have on living tissue.
Not having electrons in it valence it would be very reactive - stripping electrons from atoms or molecules it bumps into (assuming it made its way in a biotic host).

But how does a beta particle ionize an atom or molecule? If the target atom/molecule had a full valence wouldn't the beta particle just get deflected? And, if it were to join a full valence wouldn't it just knock another electron out, leaving the initial target atom/molecule unchanged?

Regarding gamma rays, how exactly do they interact with an atom/molecule? How does a photon ionize an atom/molecule?

Thanks again.
 
Physics news on Phys.org
I don't really know, but I would guess that a \beta^- particle (which is just an electron) can come with a lot of kinetic energy, so it would probably collide with another electron and transfer enough energy to that electron to escape the atom/molecule that it is bound to. If it doesn't have enough energy for that it would probably be absorbed by some molecule that is moderately stable, ionizing it. \beta^+ particles are positrons, and annihiliate with electrons releasing at least 2mc^2 = 1.022 MeV in energy in, probably gamma rays (which may go on to ionizing other stuff, as well as already having ionized something by annihilating an electron).

Gamma rays are very high energy (> 100 keV), if a gamma ray was absorbed by an electron it would certainly have enough energy to escape whatever bound state it was in, and would probably end up colliding with several other electrons and ionizing nearby molecules before it runs out of energy.
 
Energy and momentum (4-momenta) is transferred between charged particles due to the Coulomb interaction, which has infinite range. So we should not think of this as biliard balls colliding, but instead an incoming wave function interacting with the coulomb potentials that is generated by the atomic electrons and the atomic nucleus.

And if you know you scattering theory, you can calculate the probability for transfering an amount of energy that can excite and ionize and atom. And then calculate the accumulated effect, this is done in the Bethe-Bloch formula.

For charged particles also undergo radiative losses, due to the change in momentum vector (i.e acceleration), and this process leads to bremsstrahlung, since accelerated charge emits EM-waves (i.e. photons). This process is dominating over the ionization energy losses when we have light particles, i.e electrons.

Photons interact with matter with 3 processes; pair-production - compton scattering & Photoelectric effect. In the latter, the photon can be absorbed by the atomic electron and if the energy of the photon is higher than then ionization energy, the electron will leave the atom - i.e the atom becomes ionized.
 
Thread 'Unexpected irregular reflection signal from a high-finesse cavity'
I am observing an irregular, aperiodic noise pattern in the reflection signal of a high-finesse optical cavity (finesse ≈ 20,000). The cavity is normally operated using a standard Pound–Drever–Hall (PDH) locking configuration, where an EOM provides phase modulation. The signals shown in the attached figures were recorded with the modulation turned off. Under these conditions, when scanning the laser frequency across a cavity resonance, I expected to observe a simple reflection dip. Instead...

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
12
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K