Is 5 Less Than the Sum of Square, Cube, and Fourth Roots of 5?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$5<\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}$$.
 
Mathematics news on Phys.org
anemone said:
Prove that $$5<\sqrt{5}+\sqrt[3]{5}+\sqrt[4]{5}$$.

AM-GM inequality shows that:

$$\sqrt{5}+\root 3 \of{5}+\root 4 \of{5} >3\times 5^{13/36}>3\times 5^{1/3}$$

The cube of the right most term is $135>5^3$, so:

$$\sqrt{5}+\root 3 \of{5}+\root 4 \of{5} >3\times 5^{1/3}>5$$
.
 

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 59 ·
2
Replies
59
Views
148K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K