Is a Cayley Table a Reliable Indicator of a Finite Set Being a Group?

  • Thread starter Thread starter Bleys
  • Start date Start date
  • Tags Tags
    Groups Table
Bleys
Messages
74
Reaction score
0
If the Cayley table, of a finite set G, is a latin square (that is, any element g appears once and only once in a given row or column) does it follow G is a group?
I know the converse is true, and it seems reasonable that this is true. Since the array will be of size |G|x|G|, inverses exist and are unique. There will be one row (and one column) that will represent the multiplication by the identity (since the rows and columns are permutations of the set). But I don't know about associativity; in fact I'm not even sure the if the column and row representing the identity will actually be the same element. So is there a counter-example or if it's true, a proof?
 
Physics news on Phys.org
Never mind, the array need not represent an associative structure. There is an example on the wikipedia article on Latin Squares that shows one of a quasigroup with identity.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top