Is A equivalent to B in propositional calculus?

  • Thread starter Thread starter rustynail
  • Start date Start date
rustynail
Messages
53
Reaction score
0
I am starting to learn propositional calculus and am trying to make sense of the notation. I am trying to express the idea that sets A and B are equivalent. I want to know if the following statement is true and if it shows three equally valid ways of saying that A and B are the same set.

gif.gif


Thank you for your time. Any help and/or recommendations would be greatly appreciated.

Edit : Looking back at it, I think the first part does not imply that there are no elements of B that are not also in A. It does not eliminate the possibility that A is a subset of B. Should I write :

gif.gif


?
 
Last edited:
Physics news on Phys.org
Maybe a more direct way would be : ## x \in A ## iff ## x \in B ##.
 
Bacle2 said:
Maybe a more direct way would be : ## x \in A ## iff ## x \in B ##.
Doesn't that only say that all elements of A are also elements of B, making A a subset of B, and not necessarily equivalent to B? Or does using ''iff'' imply that ## x \in B ## iff ## x \in A ## ?
Also, I understand that the way I put it isn't the most direct way of doing it, but I want to know if my usage of these symbols and operators makes sense.

Thank you for your time.
 
If you move the negations inside of
rustynail said:
gif.gif
?
you get the axiom of extensionality of Zermelo-Fraenkel. That is, this "iff" is valid.
But it is unclear what you mean by "equivalent". Equivalence requires a relation. Do you mean "equivalent under the relation of equality"? Then that "iff" would be (trivially) valid. But if you mean, say, equinumerability as your equivalence relation, then the implication only goes in one direction. So, what do you mean by "equivalent"?
 
nomadreid said:
If you move the negations inside of

you get the axiom of extensionality of Zermelo-Fraenkel. That is, this "iff" is valid.
But it is unclear what you mean by "equivalent". Equivalence requires a relation. Do you mean "equivalent under the relation of equality"? Then that "iff" would be (trivially) valid. But if you mean, say, equinumerability as your equivalence relation, then the implication only goes in one direction. So, what do you mean by "equ.ivalent"?

I mean ''equivalent under the relation of equality'' as in ''A and B are the same object''. Because A and B share not only the same cardinality, but also the same elements.
So if A = {p, q, r, t}, then B = {p, q, r, t} also, and thus A=B.

Edit : I'm currently looking at the Zermelo-Fraenkel axioms. That's very helpful, thank you!
 
Last edited:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top