Is an Antisymmetric 4-Tensor Zero if Any Off-Diagonal Component is Zero?

jeckster
Messages
2
Reaction score
0

Homework Statement


prove the zero component lemma for any anti-symmetric 4-tensor: If anyone of its 0ff-diagonal component is zero in all inertial coordinate system, then the entire tensor is zero.


Homework Equations





The Attempt at a Solution



in case of 4-vector, if a particular component is zero in all inertial frame then by Lorentz Transformation in different direction, it can be proved that the 4-vector is zero in all inertial frame.
Here, i m confusing in how to prove it in case of anti-symmetric 4-tensor

Any help would be highly appreciated. thank
 
Physics news on Phys.org
I have the same problem. No answers yet.
off diagonal components of the antisymmetric 4 tensors in special relativity involves 3 vectors and we can form 4 vectors from them. If any component of that 3 vector is zero under LT the 4-vector is zero then all the off-diagonal terms are zero. This is what I thought but how can I express this in Mathematical Language?
If I'm wrong can you give me a clue about it?
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top