Is compactness preserved under function mappings?

  • Thread starter Thread starter deanslist1411
  • Start date Start date
  • Tags Tags
    Closed
deanslist1411
Messages
4
Reaction score
0
1. If A is compact, show that f(A) is compact. Is the converse true?

2. If A is connected, show that f(A) is connected. Is the converse true?

3. If B is closed, show that B inverse is closed.

Any help with any or all of these three would be greatly appreciated.
 
Physics news on Phys.org
what is f? is f continuous?

There is a set of forums at the top of the page called Homework Help that is suited for these types of questions. You should start posting there as of now. Don't be surprised if you get a warning from a moderator and your thread is moved to the homework section.

Additionnally, Physicsforum guidelines require that you show us what you've tried before you are eligible to getting help.
 
Last edited:
And what is A? is it in R? in R^n? Or in a general topological space?
 
I'm assuming that A and B are subsets of some metric space (if they were in a general topological space, then his #3 would be trivial since that would essentially be the definition of a continuous function)
 
Back
Top