Is Geometric Quantum Mechanics a Viable Alternative to Hilbert Space?

Quadratrix
Messages
2
Reaction score
0
I ran across a paper today that I found rather interesting. The idea is that "there exists a geometry description other than the conventional description in a Hilbert space...". The gist of the paper is that the quantum phase space can be viewed as a complex projective space if the dimensions of the Hilbert space is finite. The paper can be found here:

http://arxiv.org/ftp/math-ph/papers/0701/0701011.pdf

There is another paper I found that makes roughly the same argument, stating that "the manifold of pure quantum states is a complex projective space with the unitary-invariant geometry of Fubini and Study...the detailed physical characteristics of a given quantum system can be represented by specific geometrical features that are selected and preferentially identified in this complex manifold."

The first paper gives an example with the superposition principle. The second paper gives examples of geometrical features that arise in the state spaces for spin -1/2 systems. There are many other papers that talk about this idea, which could be called geometric QM. The argument that there is a corresponding relation between quantum states and points of complex projective space that is a sort of alternative to the conventional description of quantum mechanics in a Hilbert space. What do you think of this idea? Do you think it is valid?
 
Physics news on Phys.org
It is purely an equivalent mathematical description, nothing physical in it. As to whether it provides deeper insights or cleaner calculations depends on how familiar users are with it. As such, it is clearly correct, but of questionable use to a physicist. Mathematicians are, of course, not constrained by usefulness.
 
Yes. My question was more along the lines of if physicists found this formulation useful. You have to admit that while mathematicians may not be constrained by usefulness, physics is largely dependent on abstract mathematics, while mathematics holds no such tie to physics.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top