I'm a little confused because on this excerp from
http://www.tass-survey.org/richmond/answers/snrisks.txt
the author says gamma radiation could be a threat at more than 1 kiloparsec away
Gamma-rays from the explosion (much based on words of wisdom from
David Palmer - thanks, Dave!)
One way to estimate the effect of SNe in gamma-rays is to compare the
amount of power they produce in gamma-rays ALONE with that from the
Sun at ALL wavelengths:
distance at which power
power is equal to Sun's total
Sun 10^33 erg/s (all wavelengths) 1 AU
SN II 10^39 erg/s (gamma + X-rays) 1200 AU ~ 0.006 pc
SN Ia 2x10^41 erg/s (gamma + X-rays) 17000 AU ~ 0.08 pc
In somewhat more detail: both X-rays and Gamma-rays from SN 1987A
were due to the decay of radionucleides, primarily Co56 from the
Ni56->Co56->Fe56 decay chain. Gamma rays, primarily at
0.847 and 1.238 MeV, were downgraded by Compton scattering in the
envelope (keeping the envelope hot and luminous) and then emerged at
lower energies in the X-ray and gamma-ray range. The unscattered
photons at 0.847 and 1.238 were also seen.
In greater detail: observations of the flux in X-rays and gamma
rays from the Sun reveal that most of the energy is in the X-rays,
with relatively small fractions in the gamma-ray regime. Using data
from Colhane et al. (Solar Physics 153, 307 [1994]), Baoz et al.
(Solar Physics 153, 33 [1994]) and McConnell et al. (Adv. Space Res.,
v 13, n 9, 245 [1993]), I find
Energy from Sun during flares
Satellite energy range duration total power (erg/cm^2)
-----------------------------------------------------------------------
Yohkoh 20-? keV 10 sec 350
COMPTEL (GRO) 1-10 MeV 900 sec 0.01
GAMMA-1 > 30 MeV 600 sec 0.0002
By comparison, the flux in the 847 and 1238 keV lines due to
the decay of Ni-56 in a type Ia SN is estimated to be (data from
Ruiz-Lapuente et al., ApJ 417, 547 [1993]) at a distance of 1000 pc
SN Ia ~1 MeV ~60 days ~40,000
This is significant --
a type Ia SN, at the distance of 1000 pc,
dumps as much gamma-ray radiation onto the Earth as 1,000
solar flares. Even when the Sun is at the peak of its activity
cycle, I don't think it flares ten times a day, so, even at a
kiloparsec, a type Ia SN would outshine the Sun in gamma rays.
However, while I _do_ know that we easily survive even the greatest
solar flares, I don't know how a large increase in the gamma-ray
flux over a period of several months would affect the earth's
atmosphere. Steve Thorsett, in a preprint "Terrestial Implications
of Cosmological Gamma-Ray Burst Models," quotes sources which
suggest that considerably more than 100,000 erg/(cm^2) in
gamma-rays are needed to destroy the ozone layer, so it seems
that a type Ia would have to be closer than 1 kpc to cause
significant damage.