cesiumfrog said:
I'm not sure what you mean by "extract free energy from information"?
I understand that various computational processes, by their inherent irreversibility, have a thermodynamic cost that can be measured in energy per information bit.
But energy contained in the information? Do you only mean loosely, like in the context of Maxwell's demon (if the information is known to correspond to the microstate of a gas, then having the information allows us to harness part of the thermal energy of the gas for free, say by informing the control of a shutter mechanism in order to compress the gas against a piston without the expenditure of effort that would usually be required)? But it seems like you're abusing/confusing the terminology by in the same breath discussing communication of knowledge (of meta-data of what the information corresponds to), or to ascribe energy content to that knowledge. (Such can't even be analysed in the framework of a closed cycle.)
If I understand what you are asking, my answer is 'yes'. That is, thermodynamics is a theory regarding the various forms of energy, the energy can transfer between two systems, and the allowed processes by which one form of energy can be converted into another. There are many forms of energy: mechanical, thermal, electromagnetic, chemical..., to which I add 'information'.
It's not as radical as it may sound. For example, a folded protein has a different energy than an unfolded protein. Where is this energy 'stored'? Microscopically, we may try to assign the difference to detailed structural interactions, just as we sometimes try to ascribe thermal energy to a detailed description of molecular motion. And we know that sometimes that works, other times it fails- dissipative processes can't readily be described using conservative forces.
More economically, we can also say the two protein states have a different 'conformation', 'configuration', or some similar term that ignores the (currently) unmeasurable microscopic picture. What is the 'conformation' of the protein? It's information about the shape.
So I can either treat 'information' as a preferred class of physical properties that (for some reason) cannot be treated as a physical variable. Or, I can accept that information is a form of energy- and then (for example), protein folding becomes a tractable problem.
Here's another example- copying in a lossy environment. Take the 'scratch on a metal' thread. You make a scratch, and I want to make an identical scratch. How much information do Ineed to do that? For a low-resolution copy, all I need is a few parameters: length, depth, maybe the tool you used and how much pressure you applied. That's not an exact copy- in order to make a medium resolution copy, I need more information: shape of the cutting tip, orientation of the tip and sample, rate of deformation, ... And to make a *perfect* copy, I need atomic-level information about the positions and momentum of all the atoms involved.
Thermodynamics gives us a way to *quantify* this.