MHB Is it possible for $\sqrt 7 - \frac {m}{n}>\frac{1}{mn}$ to have solutions?

  • Thread starter Thread starter Albert1
  • Start date Start date
AI Thread Summary
The discussion revolves around proving that there are no natural number solutions \( m, n \) such that \( \sqrt{7} - \frac{m}{n} > \frac{1}{mn} \) while also ensuring \( \sqrt{7} - \frac{m}{n} > 0 \). It is established that if such \( m, n \) exist, then certain integer conditions must hold, leading to contradictions based on modular arithmetic. Specifically, it is shown that \( 7n^2 - m^2 \) cannot satisfy the required conditions for integers \( m \) and \( n \) both being odd. Consequently, the conclusion is reached that if \( \sqrt{7} - \frac{m}{n} > 0 \), it must also be greater than \( \frac{1}{mn} \), confirming the absence of valid solutions.
Albert1
Messages
1,221
Reaction score
0
$m,n\in N$ , and $\sqrt 7 - \dfrac {m}{n}>0$
prove :
$\sqrt 7 - \dfrac {m}{n}>\dfrac {1}{m\times n}$
 
Mathematics news on Phys.org
Albert said:
$m,n\in N$ , and $\sqrt 7 - \dfrac {m}{n}>0$
prove :
$\sqrt 7 - \dfrac {m}{n}>\dfrac {1}{m\times n}$
[sp]Suppose that there exist $m,n$ such that $0 < \sqrt7 - \frac mn < \frac1{mn}$. Then $\frac mn < \sqrt7 < \frac{m^2+1}{mn}$, and (after squaring and multiplying through by $m^2n^2$) $$ m^4 < 7m^2n^2 < (m^2+1)^2 = m^4 + 2m^2 + 1,$$ $$0 < m^2(7n^2-m^2) < 2m^2+1,$$ $$ 0 < 7n^2 - m^2 < 2 + \tfrac1{m^2}.$$ Since $7n^2 - m^2$ is an integer, it must therefore be $1$ or $2$. But the square of an integer is congruent to $0$ or $1\pmod4$, so $7n^2-m^2 = 1\pmod4$ can never occur; and the only possible solution to $7n^2-m^2 = 2\pmod4$ is if $m$ and $n$ are both odd. But the square of an odd number is congruent to $1\pmod8$. So if $m$ and $n$ are both odd then $7n^2-m^2 = 6\ne2\pmod8$. Therefore there are no solutions. It follows that if $\sqrt 7 - \frac {m}{n}$ is greater than $0$ then it must be greater than $\frac1{mn}.$

[Notice that if you drop the condition $\sqrt 7 - \frac {m}{n}>0$ then it is possible to have $\Bigl|\sqrt 7 - \frac {m}{n}\Bigr| < \frac1{mn}.$ For example, if $m=8$ and $n=3$ then $\Bigl|\sqrt 7 - \frac83\Bigr| \approx 0.0209 < \frac1{24} \approx 0.0417.$ But in that case, $\sqrt 7 - \frac 83$ is negative.][/sp]
 
Opalg said:
[sp]Suppose that there exist $m,n$ such that $0 < \sqrt7 - \frac mn < \frac1{mn}$. Then $\frac mn < \sqrt7 < \frac{m^2+1}{mn}$, and (after squaring and multiplying through by $m^2n^2$) $$ m^4 < 7m^2n^2 < (m^2+1)^2 = m^4 + 2m^2 + 1,$$ $$0 < m^2(7n^2-m^2) < 2m^2+1,$$ $$ 0 < 7n^2 - m^2 < 2 + \tfrac1{m^2}.$$ Since $7n^2 - m^2$ is an integer, it must therefore be $1$ or $2$. But the square of an integer is congruent to $0$ or $1\pmod4$, so $7n^2-m^2 = 1\pmod4$ can never occur; and the only possible solution to $7n^2-m^2 = 2\pmod4$ is if $m$ and $n$ are both odd. But the square of an odd number is congruent to $1\pmod8$. So if $m$ and $n$ are both odd then $7n^2-m^2 = 6\ne2\pmod8$. Therefore there are no solutions. It follows that if $\sqrt 7 - \frac {m}{n}$ is greater than $0$ then it must be greater than $\frac1{mn}.$

[Notice that if you drop the condition $\sqrt 7 - \frac {m}{n}>0$ then it is possible to have $\Bigl|\sqrt 7 - \frac {m}{n}\Bigr| < \frac1{mn}.$ For example, if $m=8$ and $n=3$ then $\Bigl|\sqrt 7 - \frac83\Bigr| \approx 0.0209 < \frac1{24} \approx 0.0417.$ But in that case, $\sqrt 7 - \frac 83$ is negative.][/sp]
nice solution !
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top