MHB Is it possible for $\sqrt 7 - \frac {m}{n}>\frac{1}{mn}$ to have solutions?

  • Thread starter Thread starter Albert1
  • Start date Start date
Click For Summary
The discussion revolves around proving that there are no natural number solutions \( m, n \) such that \( \sqrt{7} - \frac{m}{n} > \frac{1}{mn} \) while also ensuring \( \sqrt{7} - \frac{m}{n} > 0 \). It is established that if such \( m, n \) exist, then certain integer conditions must hold, leading to contradictions based on modular arithmetic. Specifically, it is shown that \( 7n^2 - m^2 \) cannot satisfy the required conditions for integers \( m \) and \( n \) both being odd. Consequently, the conclusion is reached that if \( \sqrt{7} - \frac{m}{n} > 0 \), it must also be greater than \( \frac{1}{mn} \), confirming the absence of valid solutions.
Albert1
Messages
1,221
Reaction score
0
$m,n\in N$ , and $\sqrt 7 - \dfrac {m}{n}>0$
prove :
$\sqrt 7 - \dfrac {m}{n}>\dfrac {1}{m\times n}$
 
Mathematics news on Phys.org
Albert said:
$m,n\in N$ , and $\sqrt 7 - \dfrac {m}{n}>0$
prove :
$\sqrt 7 - \dfrac {m}{n}>\dfrac {1}{m\times n}$
[sp]Suppose that there exist $m,n$ such that $0 < \sqrt7 - \frac mn < \frac1{mn}$. Then $\frac mn < \sqrt7 < \frac{m^2+1}{mn}$, and (after squaring and multiplying through by $m^2n^2$) $$ m^4 < 7m^2n^2 < (m^2+1)^2 = m^4 + 2m^2 + 1,$$ $$0 < m^2(7n^2-m^2) < 2m^2+1,$$ $$ 0 < 7n^2 - m^2 < 2 + \tfrac1{m^2}.$$ Since $7n^2 - m^2$ is an integer, it must therefore be $1$ or $2$. But the square of an integer is congruent to $0$ or $1\pmod4$, so $7n^2-m^2 = 1\pmod4$ can never occur; and the only possible solution to $7n^2-m^2 = 2\pmod4$ is if $m$ and $n$ are both odd. But the square of an odd number is congruent to $1\pmod8$. So if $m$ and $n$ are both odd then $7n^2-m^2 = 6\ne2\pmod8$. Therefore there are no solutions. It follows that if $\sqrt 7 - \frac {m}{n}$ is greater than $0$ then it must be greater than $\frac1{mn}.$

[Notice that if you drop the condition $\sqrt 7 - \frac {m}{n}>0$ then it is possible to have $\Bigl|\sqrt 7 - \frac {m}{n}\Bigr| < \frac1{mn}.$ For example, if $m=8$ and $n=3$ then $\Bigl|\sqrt 7 - \frac83\Bigr| \approx 0.0209 < \frac1{24} \approx 0.0417.$ But in that case, $\sqrt 7 - \frac 83$ is negative.][/sp]
 
Opalg said:
[sp]Suppose that there exist $m,n$ such that $0 < \sqrt7 - \frac mn < \frac1{mn}$. Then $\frac mn < \sqrt7 < \frac{m^2+1}{mn}$, and (after squaring and multiplying through by $m^2n^2$) $$ m^4 < 7m^2n^2 < (m^2+1)^2 = m^4 + 2m^2 + 1,$$ $$0 < m^2(7n^2-m^2) < 2m^2+1,$$ $$ 0 < 7n^2 - m^2 < 2 + \tfrac1{m^2}.$$ Since $7n^2 - m^2$ is an integer, it must therefore be $1$ or $2$. But the square of an integer is congruent to $0$ or $1\pmod4$, so $7n^2-m^2 = 1\pmod4$ can never occur; and the only possible solution to $7n^2-m^2 = 2\pmod4$ is if $m$ and $n$ are both odd. But the square of an odd number is congruent to $1\pmod8$. So if $m$ and $n$ are both odd then $7n^2-m^2 = 6\ne2\pmod8$. Therefore there are no solutions. It follows that if $\sqrt 7 - \frac {m}{n}$ is greater than $0$ then it must be greater than $\frac1{mn}.$

[Notice that if you drop the condition $\sqrt 7 - \frac {m}{n}>0$ then it is possible to have $\Bigl|\sqrt 7 - \frac {m}{n}\Bigr| < \frac1{mn}.$ For example, if $m=8$ and $n=3$ then $\Bigl|\sqrt 7 - \frac83\Bigr| \approx 0.0209 < \frac1{24} \approx 0.0417.$ But in that case, $\sqrt 7 - \frac 83$ is negative.][/sp]
nice solution !
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
2
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
960
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K