rjbeery said:
Pick any coordinate system you wish. Kruskal coordinates are not defined at the infinite observer mentioned in my OP.
Kruskal coordinates cover observers at
arbitrarily high finite radii, as do Schwarzschild coordinates. I don't think it is literally possible for a manifold with a metric defined on it (like a
Riemannian manifold or a pseudo-Riemannian manifold
edit: I seem to have gotten confused about the difference between a metric and a metric tensor, see this thread, but just replace 'pseudo-Riemannian manifold' with 'manifold with a pseudo-Riemannian metric') to actually include two points that are an infinite distance apart, see for example item (ii) on
this page which I
think is saying that any two points must be connected by a curve with a finite distance in the affine parameter along that curve. Anyway, even if a GR spacetime with a metric defined on it literally could include points at infinite distance from some other points (like points in the immediate neighborhood of the black hole), you'd still be able to represent these points in a
Penrose diagram which for a Schwarzschild black hole is similar to a Kruskal-Szkeres diagram but with the entire exterior region compressed to a finite area on the diagram (and the Penrose diagram in this case can be defined in terms of a coordinate transformation from Kruskal-Szkeres coordinates, given on the link). Points on the right edge of the diagram would be points at infinite distance from the black hole in Schwarzschild or Kruskal-Szekeres coordinates, although as I said I don't think the edge is literally meant to be part of the spacetime, though points arbitrarily close to the edge at arbitrarily large distances in Schwarzschild/Kruskal-Szekeres coordinates are part of it (in other words I think the set of points in the diagram which are meant to be part of the spacetime form an
open set)
rjbeery said:
Are you aware of a coordinate system in which the infinite observer would calculate that a mass infalling toward an EH would do so in finite time? What else could I possibly mean when I say "crosses the EH in infinite time"?
Falling from where? I assumed you were talking about falling from a finite distance (greater than the distance of the event horizon) in Schwarzschild coordinates, since in Schwarzschild coordinates objects falling in move slower and slower as they approach the horizon, never quite reaching it in any finite coordinate time. In Kruskal-Szekeres coordinates this problem doesn't occur, an object falling from a finite distance above the event horizon will pass the horizon in a finite coordinate time.
If you were instead talking about the time needed to literally fall from an infinite distance, then this would only be possible if the spacetime actually contained points at an infinite distance, which as I said I don't think is allowed. But even if it were, this would be a very odd thing to worry about, since it would have nothing to do with the fact that the central source of gravity is a black hole! After all, if we had a spacetime containing a single central planet with no event horizon, it would still take an infinite coordinate time in most coordinate systems (like Schwarzschild coordinates or Kruskal-Szkeres coordinates which could still be used in the vacuum region outside the planet's surface) for an object falling from an infinite distance to reach the planet. And in any case, the coordinate system used to draw a Penrose diagram would ensure that even such an infinite fall would only take a finite coordinate time.
rjbeery said:
Also, to say that Schwarzschild coordinates only apply to eternal black holes simply sounds like an ad hoc defense. Where did you come across this? Or is this personal supposition?
I'd only ever seen Schwarzschild coordinates defines on a
Schwarzschild metric which is a
static spacetime in the exterior region (the curvature, and thus the gravity, remains constant at every point for all eternity). However, I seem to have been wrong about the meaning of "Schwarzschild coordinates", reading the
wikipedia article (along with
this section of the textbook 'gravitation') it appears that they refer to a general type of coordinate system that can be constructed on any spherically symmetric spacetime, and that the formula for ds^2 (the line element) can in general
be different in the dt^2 and dr^2 terms than the
line element for the Schwarzschild metric in Schwarzschild coordinates. So, I guess I was wrong, if you have a star which collapses into a black hole while remaining spherically symmetric the entire time, it seems you'd be able to use Schwarzschild coordinates (
this section of a page on deriving the Schwarzschild solution seems to support that)
edit: But an evaporating black hole may be a trickier case, since a black hole which evaporates isn't even a valid solution to the equations of classical GR, so you'd probably need to use some sort of semiclassical approach to figuring out how curvature would vary as a function of time, which I'd guess would be necessary in figuring out the timing of when a distant observer would receive various light signals...
rjbeery said:
Light is Einstein's absolute system of measurement.
A rather vague statement. He defines inertial coordinate systems so that light has a constant speed in them, and defines
clock synchronization in inertial systems using light signals, but beyond this what specific role do you think light plays in general relativity?
rjbeery said:
There is no "trick" or "illusion" when light suggests that the mass does not cross the hypothetical event horizon.
It only "suggests" this to a certain set of observers, those who remain outside the event horizon themselves. Similarly, to the set of accelerating observers whose positions are constant in
Rindler coordinates defined in flat SR spacetime, no light from beyond the
Rindler horizon will ever reach them, although if at any time they chose to stop accelerating they'd cross the horizon and see light from events beyond it. Here is a diagram drawn from the perspective of an ordinary inertial frame, showing both the worldlines of the accelerating Rindler observers (black hyperbolas) and the Rindler horizon (diagonal dotted line):
If you know something about spacetime diagrams drawn from the perspective of inertial frames, you can see that the Rindler horizon is just the future light cone of an event at the origin of the coordinate system, and that the accelerating Rindler observers will never enter this future light cone as long as they maintain the same constant acceleration (well, constant
proper acceleration, their coordinate acceleration in this frame continually decreases as they approach c). So, it should be clear why they will never receive any light signals from beyond the horizon. But presumably you don't think that non-accelerating objects never
really cross the horizon, since obviously they do from the perspective of the inertial frame (just draw a vertical worldline on that diagram and you can see it'll cross the dotted line at some finite t)
Assuming you agree in the case of the Rindler observers, why do you think the case of a black hole is so different? Just as the above diagram shows what curves of constant Rindler position coordinate (the black hyperbolas) and lines of constant Rindler time coordinate (the gray straight lines) look like when plotted in an inertial frame, so we can plot what curves of constant Schwarzschild radial coordinate and constant Schwarzschild time coordinate look like in a Kruskal-Szekeres diagram, and the result looks identical in the "exterior region" labeled with an I:
rjbeery said:
The proof of this is revealed by having the infalling mass accelerate itself back to the outside observer and compare clocks after any arbitrary (finite) amount of time has passed.
And what do you suppose happens in flat spacetime if an observer departs one of the accelerating Rindler observers and heads toward the Rindler horizon, gets close to it, then turns around and moves at high velocity to catch up with that same Rindler observer again so they can compare elapsed times on their clocks?