Is it possible to integrate acceleration?

AI Thread Summary
The discussion revolves around integrating acceleration in the context of Lagrangian mechanics. A user presents an equation of motion involving gravitational force and acceleration, seeking to derive velocity. It is confirmed that integration is possible, and the relationship between acceleration and velocity is explored using the chain rule. The conversation also touches on the implications of whether the angle α is constant or a function of time, which affects the integration process. Understanding the physical system represented by the equation is emphasized as crucial for accurate integration.
Madtasmo
Messages
3
Reaction score
0
Alright so I was just messing around with Lagrangian equation, I just learned about it, and I had gotten to this equation of motion:
Mg*sin{α} - 1.5m*x(double dot)=0

I am trying to get velocity, and my first thought was to integrate with dt, but I didn't know how to. And I'm not even sure it's possible, anyways, thanks!
 
Physics news on Phys.org
##\int \sin(x) dx = -\cos(x)##

That is the general form for integrating ##\sin(x)##.
 
##\int d^2x = x dx##
 
Turns out it's possible to do so;
X(dot)=2/3*gt*sin(α)
 
Madtasmo said:
I had gotten to this equation of motion:
Mg*sin{α} - 1.5m*x(double dot)=0
Surely you’ve seen ##\ddot x = ## constant.
To find ##\dot x## you use ##\ddot x =\frac{d}{dt}\dot x## and separate.

Another common trick worth knowing is from the chain rule:
$$ \frac{d^2x}{dt^2} =\frac{d\dot x}{dt} =\frac{dx}{dt} \frac{d\dot x}{dx} =\dot x \frac{d\dot x}{dx} $$
For example, if you have Newton’s law in the form ##m\frac{d^2x}{dt^2}=F(x)## then the chain rule makes it separable, from which we get the (1-D) work energy theorem (for point masses).
 
  • Like
Likes Madtasmo
Isn't your alpha a function of time too? If alpha were constant, integrating would be trivial. But is'it? What is the physical system described by the equation?
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
This has been discussed many times on PF, and will likely come up again, so the video might come handy. Previous threads: https://www.physicsforums.com/threads/is-a-treadmill-incline-just-a-marketing-gimmick.937725/ https://www.physicsforums.com/threads/work-done-running-on-an-inclined-treadmill.927825/ https://www.physicsforums.com/threads/how-do-we-calculate-the-energy-we-used-to-do-something.1052162/
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top