Mathematica Is Mathematica able to solve expressions such as

AI Thread Summary
Mathematica can solve complex expressions, such as the equation involving variables c, q, z, h, and d, but the solutions may depend on specific conditions and branch cuts of the functions involved. The command "Reduce" was used to attempt finding solutions for q, but it returned a set of conditions rather than a straightforward solution. Several scenarios were identified, including cases where certain variables must equal zero or specific values for valid solutions to exist. The discussion highlighted the complexity of the expression and the importance of substituting values to verify potential solutions. Ultimately, while Mathematica can handle such equations, the solutions can be intricate and context-dependent.
binbagsss
Messages
1,291
Reaction score
12
(c (qz + (-1 + q) (-1 + (1 + qz)^0.5)))/(h q^2 (1 + z)^2) = d, And to solve for q

New to the programme, thanks a lot !
 
Physics news on Phys.org
I think this answers your question

In[1]:= Reduce[c (q*z+(-1+q) (-1+Sqrt[1+q*z]))==d*(h*q^2 (1+z)^2),q]

From In[1]:= Reduce::useq: The answer found by Reduce contains unsolved equation(s) A likely reason for this is that the solution set depends on branch cuts of Mathematica functions.

Out[1]= (z == -1 && c == 0) || (z == 0 && h == 0 && c == 0) || (c != 0 &&
z == -1 && q == 0) || c != 0 && z == -1 && q == (-1 - Sqrt[5])/2) || (c*(-1
+ q) != 0 && z == 0 && h == 0) || (d*h*(1 + z) != 0 && -c != 0 && q == 0) || (z
+ z^2 != 0 && h == 0 && c == 0) || (h*z + h*z^2 != 0 && d == 0 && c == 0) ||
(d*h*z + d*h*z^2 != 0 && c == 0 && q == 0) || (c != 0 && z == 0 && h == 0 && q
== 1) || (h != 0 && z == 0 && d == 0 && c == 0) || (d*h != 0 && z == 0 && c == 0
&& q == 0) || (c*(-1 + q) != 0 && h != 0 && z == 0 && d == 0) || (z != 0 && d*h
+ 2*d*h*z + d*h*z^2 != 0 && c == (d*h + 2*d*h*z + d*h*z^2)/z && q == 1) || (c*z
!= 0 && 1 + z != 0 && h == 0 && q == 0) || (c*z != 0 && h + h*z != 0 && d == 0
&& q == 0) || (d*h*(1 + z) != 0 && c*(-1 + Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 &
, 1]) != 0 && 0 == (-c + c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 -
2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2
- 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 1] - c*z*Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 &
, 1] + d*h*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1
+ 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3*
#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3
+ d^2*h^2*z^4*#1^3 & , 1]^2 + 2*d*h*z* Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 +
c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 +
6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 1]^2 + d*h*z^2*
Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*
#1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 +
d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 +
d^2*h^2*z^4*#1^3 & , 1]^2 + c*Sqrt[1 + z*Root[ c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1
+ c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z* #1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2* z*#1^3 +
6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4* #1^3 & , 1]] -
c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 +
2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 -
2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 1]* Sqrt[1 + z*Root[ c^2*z -
2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*
#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2* z*#1^3 + 6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*
#1^3 & , 1]])/ (c*(-1 + Root[c^2*z - 2*c*d*h* #1 - 4*c*d*h*z*#1 + c^2*z^2*#1 -
2*c*d*h*z^2* #1 + 2*c*d*h*#1^2 - c^2*z*#1^2 + 2*c*d*h*z* #1^2 - 2*c*d*h*z^2*#1^2
- 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 1])) && q == Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z*#1^3 + 6*d^2*h^2* z^2*#1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*#1^3
& , 1]) || (d*h*(1 + z) != 0 && c*(-1 + Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 +
c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h*z^2* #1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 +
6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 2]) != 0 && 0 ==
(-c + c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 +
2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 -
2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 2] - c*z*Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 &
, 2] + d*h*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1
+ 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3*
#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3
+ d^2*h^2*z^4*#1^3 & , 2]^2 + 2*d*h*z* Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 +
c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 +
6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 2]^2 + d*h*z^2*
Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*
#1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 +
d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 +
d^2*h^2*z^4*#1^3 & , 2]^2 + c*Sqrt[1 + z*Root[ c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1
+ c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z* #1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2* z*#1^3 +
6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4* #1^3 & , 2]] -
c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 +
2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 -
2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 2]* Sqrt[1 + z*Root[ c^2*z -
2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*
#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2* z*#1^3 + 6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*
#1^3 & , 2]])/ (c*(-1 + Root[c^2*z - 2*c*d*h* #1 - 4*c*d*h*z*#1 + c^2*z^2*#1 -
2*c*d*h*z^2* #1 + 2*c*d*h*#1^2 - c^2*z*#1^2 + 2*c*d*h*z* #1^2 - 2*c*d*h*z^2*#1^2
- 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 2])) && q == Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z*#1^3 + 6*d^2*h^2* z^2*#1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*#1^3
& , 2]) || (d*h*(1 + z) != 0 && c*(-1 + Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 +
c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h*z^2* #1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 +
6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 3]) != 0 && 0 ==
(-c + c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 +
2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 -
2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 3] - c*z*Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 &
, 3] + d*h*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1
+ 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3*
#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3
+ d^2*h^2*z^4*#1^3 & , 3]^2 + 2*d*h*z* Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 +
c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 +
6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 3]^2 + d*h*z^2*
Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*
#1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h* z^2*#1^2 - 2*c*d*h*z^3* #1^2 +
d^2*h^2*#1^3 + 4*d^2*h^2*z*#1^3 + 6*d^2*h^2*z^2*#1^3 + 4*d^2*h^2*z^3*#1^3 +
d^2*h^2*z^4*#1^3 & , 3]^2 + c*Sqrt[1 + z*Root[ c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1
+ c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z* #1^2 + 2*c*d*h*z*#1^2 -
2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2* z*#1^3 +
6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4* #1^3 & , 3]] -
c*Root[c^2*z - 2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 +
2*c*d*h* #1^2 - c^2*z*#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2* #1^2 -
2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 3]* Sqrt[1 + z*Root[ c^2*z -
2*c*d*h*#1 - 4*c*d*h*z*#1 + c^2*z^2* #1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*
#1^2 + 2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 +
4*d^2*h^2* z*#1^3 + 6*d^2*h^2*z^2* #1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*
#1^3 & , 3]])/ (c*(-1 + Root[c^2*z - 2*c*d*h* #1 - 4*c*d*h*z*#1 + c^2*z^2*#1 -
2*c*d*h*z^2* #1 + 2*c*d*h*#1^2 - c^2*z*#1^2 + 2*c*d*h*z* #1^2 - 2*c*d*h*z^2*#1^2
- 2*c*d*h*z^3*#1^2 + d^2*h^2*#1^3 + 4*d^2*h^2*z* #1^3 + 6*d^2*h^2*z^2*#1^3 +
4*d^2*h^2*z^3*#1^3 + d^2*h^2*z^4*#1^3 & , 3])) && q == Root[c^2*z - 2*c*d*h*#1 -
4*c*d*h*z*#1 + c^2*z^2*#1 - 2*c*d*h*z^2*#1 + 2*c*d*h*#1^2 - c^2*z*#1^2 +
2*c*d*h*z*#1^2 - 2*c*d*h*z^2*#1^2 - 2*c*d*h*z^3* #1^2 + d^2*h^2*#1^3 +
4*d^2*h^2*z*#1^3 + 6*d^2*h^2* z^2*#1^3 + 4*d^2*h^2*z^3* #1^3 + d^2*h^2*z^4*#1^3
& , 3]) || (c != 0 && h != 0 && z == 0 && d == 0 && q == 1) || (c*z != 0 && -2 +
z - Sqrt[4 + z^2] != 0 && 0 == (4 - 2*z + 2*z^2 + 2*Sqrt[4 + z^2] - 2*z*Sqrt[4 +
z^2] - 2*Sqrt[2]*Sqrt[2 + z^2 - z*Sqrt[4 + z^2]] + Sqrt[2]*z*Sqrt[2 + z^2 -
z*Sqrt[4 + z^2]] - Sqrt[2]*Sqrt[4 + z^2]* Sqrt[2 + z^2 - z*Sqrt[4 + z^2]])/
(2*(2 - z + Sqrt[4 + z^2])) && 1 + z != 0 && h == 0 && q == (z - Sqrt[4 +
z^2])/2) || (c*z != 0 && -2 + z - Sqrt[4 + z^2] != 0 && 0 == (4 - 2*z + 2*z^2 +
2*Sqrt[4 + z^2] - 2*z*Sqrt[4 + z^2] - 2*Sqrt[2]*Sqrt[2 + z^2 - z*Sqrt[4 + z^2]]
+ Sqrt[2]*z*Sqrt[2 + z^2 - z*Sqrt[4 + z^2]] - Sqrt[2]*Sqrt[4 + z^2]* Sqrt[2 +
z^2 - z*Sqrt[4 + z^2]])/ (2*(2 - z + Sqrt[4 + z^2])) && h + h*z != 0 && d == 0
&& q == (z - Sqrt[4 + z^2])/2) || (c*z != 0 && -2 + z + Sqrt[4 + z^2] != 0 && 0
== (-4 + 2*z - 2*z^2 + 2*Sqrt[4 + z^2] - 2*z*Sqrt[4 + z^2] + 2*Sqrt[2]*Sqrt[2 +
z^2 + z*Sqrt[4 + z^2]] - Sqrt[2]*z*Sqrt[2 + z^2 + z*Sqrt[4 + z^2]] -
Sqrt[2]*Sqrt[4 + z^2]* Sqrt[2 + z^2 + z*Sqrt[4 + z^2]])/ (2*(-2 + z + Sqrt[4 +
z^2])) && 1 + z != 0 && h == 0 && q == (z + Sqrt[4 + z^2])/2) || (c*z != 0 && -2
+ z + Sqrt[4 + z^2] != 0 && 0 == (-4 + 2*z - 2*z^2 + 2*Sqrt[4 + z^2] -
2*z*Sqrt[4 + z^2] + 2*Sqrt[2]*Sqrt[2 + z^2 + z*Sqrt[4 + z^2]] - Sqrt[2]*z*Sqrt[2
+ z^2 + z*Sqrt[4 + z^2]] - Sqrt[2]*Sqrt[4 + z^2]* Sqrt[2 + z^2 + z*Sqrt[4 +
z^2]])/ (2*(-2 + z + Sqrt[4 + z^2])) && h + h*z != 0 && d == 0 && q == (z +
Sqrt[4 + z^2])/2)

So, for example, if you look at the first line of the "solution" you see
(z == -1 && c == 0) || lots_of_other_stuff.

Thus if we substitute -1 for z and 0 for c into your original equation we get
c (q*z + (-1 + q) (-1 + Sqrt[1 + q*z])) == d*(h*q^2 (1 + z)^2)
0 (q*z + (-1 + q) (-1 + Sqrt[1 + q* -1])) == d*(h*q^2 (1 + -1)^2)
0 (q*z + (-1 + q) (-1 + Sqrt[1 + q* -1])) == d*(h*q^2 0^2)
0 == 0

And likewise for all the other alternatives, some of which are very complicated.

Buried inside that are some
Root[expression_containing_#,n]
That is a much simpler way of saying that this is the nth root of the expression.
For your problem it appears possible to expand all those Root[] out to the full result containing radicals, but expands the size of this by several fold.

If you have any additional information, like whether some of your variables are or are not equal to zero, whether they are positive, whether they are or are not equal to each other, or that 1+q*z will be greater than or equal to zero so that the square root will not be complex, etc., then it might be possible to substantially simplify that. But there are no guarantees.

Unless you can provide additional information or you can identify one of the alternatives that captures your problem, both those probably being close to the same thing, it looks like such a "solution" probably isn't going to be of any use to you.

Simplify[] can sometimes reduce the size of things like this by perhaps half, but sometimes that will lose a solution.
 
Last edited:

Similar threads

Replies
2
Views
1K
Replies
4
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
19
Views
2K
Back
Top