Is matrix hermitian and its eigenvectors orthogonal?

bugatti79
Messages
786
Reaction score
4
I calculate

1) ##\Omega=
\begin{bmatrix}
1 & 3 &1 \\
0 & 2 &0 \\
0& 1 & 4
\end{bmatrix}## as not Hermtian since ##\Omega\ne\Omega^{\dagger}## where##\Omega^{\dagger}=(\Omega^T)^*##

2) ##\Omega\Omega^{T}\ne I## implies eigenvectors are not orthogonal.

Is this correct?
 
Physics news on Phys.org
The matrix ##M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}## does not satisfy ##M M^\dagger = I##, but its eigenvectors are orthogonal.
 
Ok then my 2)assumption is not correct thus I proceeded to calculate the eigenvectors for the following eigenvalues ##\lambda=1,2,4## and then check for orthogonality

##\lambda=1##

##\begin{bmatrix}1& 3 & 1\\ 0& 2&0 \\ 0& 1 &4 \end{bmatrix}\begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}=\lambda \begin{bmatrix}x_1\\ x_2\\ x_3\end{bmatrix}##

In component form I get

##(1-1)x_1+3x_2+x_3=0##
##0+(2-1)x_2+0=0##
##0+x_2+(4-1)x_3=0##
I am confused here for 2 reasons

1) How to deal with ##(1-1)x_1##
2) the 2nd line suggest ##x_2=0## but on the 3rd line ##x_2=-3x_3##

Not sure how to proceed from here...
Any help will be appreciated.
 
I'm not sure why ##x_1##, ##x_2##, and ##x_3## are coming into the process. To compute eigenvalues you solve for ##\lambda## by expanding ##det(M - \lambda I) = 0## then finding roots. You seem to be skipping ahead to the part where you know a specific lambda and want to find the associated vector.

The khan academy video on eigenvectors might help.
 
Thanks for the video, very useful

I have expanded ##det(\Omega - \lambda I) = 0## to get

##\begin{bmatrix}1-\lambda& 3 & 1\\ 0& 2-\lambda&0 \\ 0& 1 &4-\lambda \end{bmatrix}##

For ##\lambda=4## say we get the following

##\begin{bmatrix}1-4& 3 & 1\\ 0& 2-4&0 \\ 0& 1 &4-4 \end{bmatrix}\begin{bmatrix}v_1\\ v_2\\ v_3\end{bmatrix}=0##

##-3v_1+3v_2+v_3=0##
##-2v_2=0##
##v_2=0##
If we let ##v_1=1## then ##v_3=3##. Our eigenvector for ##\lambda=4## is (1,0,3)

For ##\lambda=1## I have difficulty because

##\begin{bmatrix}1-1& 3 & 1\\ 0& 2-1&0 \\ 0& 1 &4-1 \end{bmatrix}\begin{bmatrix}v_1\\ v_2\\ v_3\end{bmatrix}=0##

##3v_2+v_3=0##
##v_2=0##
##v_2+3v_3=0## but I cannot determine what ##v_1## is...?
 
You can check that for ##\lambda = 1## every vector with ##v_2=v_3=0## and ##v_1\in \mathbb{C}## is an eigenvector.
Do that.

I would advise brushing up on solving systems of linear equations. Because that's where your main issue seems to be located.
If you have a solution, always check that the vectors you found actually give the correct eigenvalues.
 
  • Like
Likes bugatti79
bugatti79 said:
Thanks for the video, very useful

I have expanded ##det(\Omega - \lambda I) = 0## to get

##\begin{bmatrix}1-\lambda& 3 & 1\\ 0& 2-\lambda&0 \\ 0& 1 &4-\lambda \end{bmatrix}##

For ##\lambda=4## say we get the following

##\begin{bmatrix}1-4& 3 & 1\\ 0& 2-4&0 \\ 0& 1 &4-4 \end{bmatrix}\begin{bmatrix}v_1\\ v_2\\ v_3\end{bmatrix}=0##

##-3v_1+3v_2+v_3=0##
##-2v_2=0##
##v_2=0##
If we let ##v_1=1## then ##v_3=3##. Our eigenvector for ##\lambda=4## is (1,0,3)

For ##\lambda=1## I have difficulty because

##\begin{bmatrix}1-1& 3 & 1\\ 0& 2-1&0 \\ 0& 1 &4-1 \end{bmatrix}\begin{bmatrix}v_1\\ v_2\\ v_3\end{bmatrix}=0##

##3v_2+v_3=0##
##v_2=0##
##v_2+3v_3=0## but I cannot determine what ##v_1## is...?

##v_1## can be anything. You can choose it to be 1, for example. Remember that any multiple of an eigenvector is also an eigenvector with the same eigenvalue.
 
  • Like
Likes bugatti79
OK guys, thank you.
I can see how that holds for ##\lambda=1##.

Onto my next problem :-)
 

Similar threads

Back
Top