Is My Mathematical Discovery Truly Original?

  • Thread starter Thread starter enkrypt0r
  • Start date Start date
enkrypt0r
Messages
10
Reaction score
0
Well, last summer I had a lot of time on my hands, and I would stay up late just randomly playing with math and numbers to kill time. After playing around with them long enough, I seem to have come up with a theorem/axiom/postulate (I don't know the terminology). I never really thought that I had come up with anything new until I had a look at my notebook today, and started Googling. Perhaps I wasn't trying the right keywords, but I can't find anything like this online. Now that I think about it, I seem to remember writing a program to prove this true, and it ended up working. I've since reformatted that computer (installed my mom's new OS).

Anyways, it's not really a big deal or anything, and I doubt it's really useful, but:"If the absolute value of a minus b is equal to one, then the least common multiple of a and b is equal to ab."

or

If |a-b| = 1 Then LCM(a,b) = abI'm sure something like this is already in existence, but I can't seem to find it... Can anybody else?
 
Mathematics news on Phys.org
I'm afraid what you've come up with isn't new-- your statement says that the least common multiple of two consecutive integers is their product. You can see this by looking at the formula for the least common multiple of two numbers lcm(a,b)=\frac{ab}{gcd(a,b)}. Since a and b are consecutive, gcd(a,b)=1, which yields the result.

Still, carry on playing around on your notebook and one day you'll discover something new!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
38
Views
1K
Replies
5
Views
2K
Replies
9
Views
1K
Replies
28
Views
969
Replies
3
Views
3K
Replies
6
Views
2K
Back
Top