B Is Quantum Interference Evidence of Multiple Universes?

  • B
  • Thread starter Thread starter TheQuestionGuy14
  • Start date Start date
  • Tags Tags
    Interference Quantum
TheQuestionGuy14
Messages
158
Reaction score
8
What exactly is quantum interference (eg. Superposition, Double Slit Experiment) and what causes it?

I've heard some crazy explanations that its other universes interacting with ours, but what is actually causing quantum interference?
 
Physics news on Phys.org
In classical probability we can write ( if A and B are from a complete set of outcomes) ##P( A\ or\ B) = P(A) + P(B)##. in quantum mechanics the wave functions are amplitudes ( 'square roots' of probability) and ##P(A) = |\psi_A|^2##. The amplitudes can be added together and then squared. So ##P(A\ or\ B) = |\psi_A + \psi_B|^2##. When we add those amplitudes together some parts may cancel out which affects the probabilities of outcomes. This is quantum interference.

It can happen whenever wave functions are split and recombined and amplitudes are added, like the double-slit experiment.
 
Last edited:
  • Like
Likes vanhees71
Mentz114 said:
In classical probability we can write ( if A and B are from a complete set of outcomes) ##P( A\ or\ B) = P(A) + P(B)##. in quantum mechanics the wave functions are amplitudes ( 'square roots' of probability) and ##P(A) = |\psi_A|^2##. The amplitudes can be added together and then squared. So ##P(A\ or\ B) = |\psi_A + \psi_B|^2##. When we add those amplitudes together some parts may cancel out which affects the probabilities of outcomes. This is quantum interference.

It can happen whenever wave functions are split and recombined and amplitudes are added, like the double-slit experiment.
So... erm... What does this mean in words instead of mathematical formulae?
 
TheQuestionGuy14 said:
what is actually causing quantum interference?

I guess, nobody knows.

You can, though, think that the world actually consists of some sort of waves which can interfere (i.e., with some simplification, each particle is a wave so the interference is not a problem).
This view is quite good, but you may then get other questions for which the answer is not yet clear.

So, in the end, "nobody knows".
 
TheQuestionGuy14 said:
What exactly is quantum interference

At the beginning level the following is about as good as you can get:
https://www.amazon.com/dp/0691164096/?tag=pfamazon01-20

Once you have done some basic QM ie an actual first course at university level then the following is a better explanation:
https://arxiv.org/ftp/quant-ph/papers/0703/0703126.pdf

But still not perfect:
https://arxiv.org/abs/1009.2408

Physics can be funny like that. You learn one thing when you start, another when you do a bit more, and still another once you are advanced. Its a bit weird like that.

Overall however I am not a fan of how its usually taught - I think the following is a better way to get to grips with it:
https://www.scottaaronson.com/democritus/lec9.html

Thanks
Bill
 
MichPod said:
I guess, nobody knows..

We do - its just not common-sensical and can only really explained mathematically.

Thanks
Bill
 
MichPod said:
This view is quite good, but you may then get other questions for which the answer is not yet clear.

A lot of beginning students think that way and at that level it allows them to get by. The link I gave to the MIT lecture is much closer to what QM actually is.

In fact sometimes they never get over it leading to myths in QM:
https://arxiv.org/abs/quant-ph/0609163

Thankds
Bill
 
Last edited:
bhobba said:
We do - its just not common-sensical and can only really explained mathematically.

Thanks
Bill
So, if we do know, and its not other universes, does this mean the Many Worlds Interpretation is no longer viable?
 
TheQuestionGuy14 said:
So, if we do know, and its not other universes, does this mean the Many Worlds Interpretation is no longer viable?
MWI is as viable as ever - it's just a different way of describing the same math, and as @bhobba has already pointed out, the description of quantum interference is in the math.
 
  • Like
Likes bhobba
  • #10
min. 3.25
John Preskill
 
  • #11
TheQuestionGuy14 said:
So, if we do know, and its not other universes, does this mean the Many Worlds Interpretation is no longer viable?

This is the issue using a word like knowing - it has all sorts of baggage philosophers will argue about endlessly.

The more precise answer I will give, that avoids such issues, is physics is a mathematical model. In QM we know the why of that model - it has to do with what are called generalized probability models - QM is just the next simplest one after ordinary probability theory. Now what does it mean. Physicists have been trying to answer that one for a long long time without success. We have all sorts of possible answers, like Many Worlds, but unfortunately no way to experimentally tell the difference. This is hardly surprising since they were all concocted to be the same as the formalism which everyone agrees on, and as I explained we have a rather good idea of why it is that way - mathematically.

So - where does that leave your query - sorry to say - nowhere - its bogged down in so much philosophical baggage the exact answer is often unsatisfactory (ie a generalized probability model) or when we try to be more specific - as the other poster said - we don't know. Its maddening - but is not the only area like that. Although not as often discussed ordinary probability theory is exactly the same - but I will let you investigate that one yourself. In fact, John Baez thinks arguments about it are often simply the same arguments about probability in a different setting:
http://math.ucr.edu/home/baez/bayes.html

This is hardly surprising since we know QM is itself a generalized probability model so carries exactly the same issues with it - plus some others like Bell inequalities peculiar to QM.

Thanks
Bill
 
  • Like
Likes vanhees71
  • #12
TheQuestionGuy14 said:
So... erm... What does this mean in words instead of mathematical formulae?
You cannot express QT in words but only in math!
 
  • Like
Likes bhobba and weirdoguy
  • #13
bhobba said:
This is the issue using a word like knowing - it has all sorts of baggage philosophers will argue about endlessly.

The more precise answer I will give, that avoids such issues, is physics is a mathematical model. In QM we know the why of that model - it has to do with what are called generalized probability models - QM is just the next simplest one after ordinary probability theory. Now what does it mean. Physicists have been trying to answer that one for a long long time without success. We have all sorts of possible answers, like Many Worlds, but unfortunately no way to experimentally tell the difference. This is hardly surprising since they were all concocted to be the same as the formalism which everyone agrees on, and as I explained we have a rather good idea of why it is that way - mathematically.

So - where does that leave your query - sorry to say - nowhere - its bogged down in so much philosophical baggage the exact answer is often unsatisfactory (ie a generalized probability model) or when we try to be more specific - as the other poster said - we don't know. Its maddening - but is not the only area like that. Although not as often discussed ordinary probability theory is exactly the same - but I will let you investigate that one yourself. In fact, John Baez thinks arguments about it are often simply the same arguments about probability in a different setting:
http://math.ucr.edu/home/baez/bayes.html

This is hardly surprising since we know QM is itself a generalized probability model so carries exactly the same issues with it - plus some others like Bell inequalities peculiar to QM.

Thanks
Bill

On the topic of Many Worlds, I have a question about it and its not really a big enough question to post a thread about it (I do ask a lot of questions; like my name suggests, sorry if I'm bothering you).

So, a lot of people say that every time you make any decision it makes a split universe. But I thought MWI was only about wave functions and quantum mechanics, not everday things? Is everyday decision making part of the interpretation?
 
  • #14
TheQuestionGuy14 said:
On the topic of Many Worlds, I have a question about it and its not really a big enough question to post a thread about it (I do ask a lot of questions; like my name suggests, sorry if I'm bothering you).

So, a lot of people say that every time you make any decision it makes a split universe. But I thought MWI was only about wave functions and quantum mechanics, not everday things? Is everyday decision making part of the interpretation?
If MWI applies to QM, then it must apply to "everyday" things.
 
  • #16
bhobba said:
Overall however I am not a fan of how its usually taught - I think the following is a better way to get to grips with it:
https://www.scottaaronson.com/democritus/lec9.html

Its the above link. The one you gave is the explanation of the double slit after a first course in QM. One generally uses the double slit to help motivate the usual QM formalism, but texts forget to go back and show how that formalism explains the double slit. It, at the beginning, is explained as a demonstration of how it sometimes is a wave so can go through both slits, interfering while doing so, and sometimes as a particle as indicated by flashes on a screen. But you have learned in your QM course its not really a wave or a particle - its described by this thing called a quantum state that allows you to calculate the probabilities of observations. So we now need to use that to explain the double slit - which is what the paper does. Whats it is a demonstration of is the principle of superposition and the uncertainty principle. Directly behind each slit its in a state that gives that position with 100% certainty. With both slits open its in a state that is a superposition of being behind slit one or slit two. Consider slit 1 for a moment. We know its position with 100% certainty so we know nothing of it momentum. We haven't done anything to its energy so it still has the same speed, its now unknown momentum shows up in we do not know its direction. Where the flash occurs is a measurement of the direction, the probability of which, as the paper explains we can predict. Now we have both slits open and you get a superposition as explained before. You work through the same math as for a single slit, and low and behold you get an interference pattern. Its the same result as the wave-particle idea but an entirely different explanation.

IMHO you should not be learning and unlearning ideas - you should be told what's really going on from the start - and that's exactly what that MIT lecture does. Its not perfect, but better than the usual presentation IMHO.

Thanks
Bill
 
  • #18
vanhees71 said:
Oh no, not again this Marcella paper. If you want a good discussion on the double slit experiment, read the introductory parts of Feynman Lectures vol. III, which you can find legally for free online: http://www.feynmanlectures.caltech.edu/III_01.html

We don't want to go through this one again.

You can certainly trust Feynman - so to the OP just use that.

In fact all the lectures are excellent.

What do they say to MIT students - get a copy and devour it. I have a copy, did just that and never regretted it.

Strangely though Landau - Mechanics had a stronger effect - this was my first exposure to the real power of symmetry - its life changing actually - at least for me.

Thanks
Bill.
 
  • Like
Likes vanhees71
  • #19
Indeed, getting exposed to Noether's theorem was one of the strongest impressions during my studies of physics. I think, I got introduced to it at the first time in the course lecture on classical analytical mechanics.
 
  • #20
bhobba said:
Its the above link.

I am a bit confused as in Aaronson's lectures he did not mention MIT for what I can see.

But... anyway. How do you of Aaronson explain the interference pattern in the double slit experiment if not by waves? Say, we think of QM as of an alternative probability theory along the lines put by Aaronson in his lecture #9. And then what?

I definitely agree with you that things should better not be unlearned. I just do not understand well enough what you and Aaronson propose and besides I am not sure if this approach has a wide support. IMHO we are speaking of yet unresolved things on which there are many opinions and no any consensus. I'd be happy to learn I am wrong here.
 
  • #21
MichPod said:
I am a bit confused as in Aaronson's lectures he did not mention MIT for what I can see.

But... anyway. How do you of Aaronson explain the interference pattern in the double slit experiment if not by waves? Say, we think of QM as of an alternative probability theory along the lines put by Aaronson in his lecture #9. And then what?
.

In QM probabilities, or more precisely probability amplitudes, are complex numbers. It is sufficient, however, to consider them as being positive or negative, whereas, traditional probabilities are positive.

Aaronson explains this well but it terms of the double slit the heart of the matter is this:

Suppose the probability amplitude of a particle hitting the screen at a given point is:

##+0.1## if slit one is open; and

##-0.1## if slit two is open.

The probability, by the way, is the square of the amplitude.

Therefore, if slit one is open, the probability of hitting the given point is ##0.01##. And, the same if slit two is open.

Bur, if both slits are open then the probability amplitude is ##0.1 + (-0.1) = 0##. Hence, the probability of the particle hitting the given point is ##0##.

The two probability amplitudes cancel out giving quantum interference.

In other words, if either slit is open, then the particle sometimes hits the given point, but if both slits are open, then it never hits the given point.
 
  • Like
Likes bhobba
  • #22
Ok, but how can we explain the change of the phase of the probability amplitude along the screen i.e. the interference strips?

And besides, having presented this nice variation of the probability theory with complex amplitudes, what can we say about what kind of reality stays behind, say, negative amplitudes? Is it that our theory works just as a calculation tool or because it corresponds more or less to some reality?
 
  • #23
MichPod said:
Ok, but how can we explain the change of the phase of the probability amplitude along the screen i.e. the interference strips?

And besides, having presented this nice variation of the probability theory with complex amplitudes, what can we say about what kind of reality stays behind, say, negative amplitudes? Is it that our theory works just as a calculation tool or because it corresponds more or less to some reality?
The change of phase is due to the nature of time evolution of a quantum system. That is why the complex amplitudes arise.

Reality, it seems to me, is what we measure. There are, incidentally, the same issues in classical gravitation, for example. How does the Earth know that the Sun is there? How does the Earth know the strength of the gravitational field and act accordingly? Both classical gravitation and QM are mathematical models that leave an underlying cause unexplained.

There is, however, one interpretation that is too bizarre. That is that a particle acts sometimes like a wave and interferes with itself and sometimes mysteriously turns back into a point particle!
 
  • #24
For what I can see for myself now this picture brings not more understanding than early interpretations. Also, I cannot see how the probabilities of the measurements of other observables arise from it. I.e. if we interpret wave function as a probability amplitude of the coordinate measurement (as a pure math midel), this does not naturally resolve to the probabilities of the measurement of the momentum.
Now I personally do not like the idea of "quantum duality" either. Of course, saying that an electron may behave like a particle or like a wave is quite a poor science, even if it gives us right calculation results.
 
  • #25
MichPod said:
For what I can see for myself now this picture brings not more understanding than early interpretations. Also, I cannot see how the probabilities of the measurements of other observables arise from it. I.e. if we interpret wave function as a probability amplitude of the coordinate measurement (as a pure math midel), this does not naturally resolve to the probabilities of the measurement of the momentum.
.

To understand these things you would have to learn QM, then all would be clear!

For example, if you do a Fourier transform of the position wave function you get the momentum wave function.
 
  • #26
Of course, wave mechanics is a bit overemphasizing positions. That's very natural since wave mechanics is nothing else than QT using the (generalized) position eigenbasis. Of course, you can calculate the probability distribution for any observable you like from the wave function. You simply have to transform it to another basis.

E.g., if you want momentum distributions, you simply need a Fourier transform. If ##\psi(x)## is the wave function (i.e., ##|\psi(x)|^2## is the position-probability distribution), then the momentum-space wave function is given by
$$\tilde{\psi}(p)=\langle p|\psi \rangle=\int_{\mathbb{R}} \mathrm{d} x \langle p |x \rangle \langle x|\psi \rangle=\int_{\mathbb{R}} \mathrm{d} x \frac{1}{\sqrt{2 \pi}} \exp(-\mathrm{i} p x) \psi(x),$$
and then ##|\tilde{\psi}(p)|^2## is the momentum-probability distribution. Why this is so, you can read here:

https://www.physicsforums.com/threa...er-transform-of-position.911528/#post-5742932

You can also rest assured that in modern QT there is no wave-particle dualism anymore. There is only one concise and very successful formalism called quantum theory which consistently describes the behavior of all matter, from the tiniest elementary particles to the observable matter surrounding us. On its most fundamental level it is the Standard Model of elementary particles, i.e., a relativistic quantum field theory.
 
  • #27
And why does the Fourer transform of the coordinate probability amplitudes is supposed to give the momentum probability amplitudes?
This does not follow from the Aaronson's probability interpretation.

Now the fact of the existence of very many interpretations of QM, including the approach of Aaronson himself, allows me to suppose that the problem is not the lack of my knowledge of QM and that learning of QM does not bring resolution to such problems.
 
Last edited:
  • #28
Another good advice is "not to listen to theoretical physisits' words but to look at their deeds" (Einstein). You can forget about almost all the more or less esoteric interpretations. The only thing you need is the formalism, based on Born's rule, which defines the probabilistic meaning of quantum states (statistical minimal interpretation, also known as ensemble interpretation).
 
  • #29
vanhees71 said:
The only thing you need is the formalism, based on Born's rule,

Well, that depends on my goals. If I am trying to see what QM may mean, then I definitely need some other things. I am not a physicist by profession, and while my level is defenitely below what is needed to work in physics, I at least can afford to myself to not conform with the "everything is awesome" attitude which is what is always common among the majority.
 
  • #30
MichPod said:
And why does the Fourer transform of the coordinate probability amplitudes is supposed to give the momentum probability amplitudes?
This does not follow from the Aaronson's probability interpretation.

Now the fact of the existence of very many interpretations of QM, including the approach of Aaronson, allows me to suppose that the problem is not the lack of my knowledge of QM and that learning if QM does not bring resolution to such problems.

If you have no interest in learning QM from the experts like @vanhees71, then what is the point of your questions?

Your lack of knowledge is the only reason you have posted these questions here. If you knew QM well enough, you would be the one answering the questions!
 
  • Like
Likes vanhees71
  • #31
Indeed, as I said somewhere else in this forum today: If you want religion, go to church. You find answers to your questions in physics!
 
  • Like
Likes bhobba
  • #32
PeroK said:
If you have no interest in learning QM from the experts like @vanhees71, then what is the point of your questions?

I have learned some parts of QM from books and online lectures. I doubt I could learn much from forum discussions. Now, if I am supposed here to ask a question and thankfully accept the answer, then thank you and let's think the case is closed.
 
Last edited:
  • #33
Also I think the main point was lost along the discussion. What was discussed is the "interpretation" of Aaronson which bhobba proposed, not the QM itself. So when I was asking my "how" questions that was related to Aaranson's approach and could not in general be clarified with a reference to regular QM.
 
Last edited:
  • #34
MichPod said:
How do you of Aaronson explain the interference pattern in the double slit experiment if not by waves?

I have posted that one, and with great care as well. Or simply - read the paper.

Vanhees and I have had a long running 'discussion' about that paper - it has issues. To me they are minor - but he has a different view. See:
https://arxiv.org/abs/1009.2408

Scott taught at MIT for a long time - but just checked- recently he moved to UT Austin. I think he gave those lectures while at the University of Waterloo though just before going to MIT.

Thanks
Bill
 
  • #35
MichPod said:
Also I think the main point was lost along the discussion. What was discussed is the "interpretation" of Aaronson which bhobba proposed, not the QM itself. So when I was asking my "how" questions that was related to Aaranson's approach and could not in general be clarified with a reference to regular QM.

To follow Scotts approach and explainb the double slit you need more than his lecture. That simply motivates wave-functions. How that is then used to derive the double slit - it doesn't give the detail mind you - the linked paper does - you need to read the first 3 Chapters of Ballentine.

I don't think I ever claimed a direct link between Scott's lecture and the double slit - I merely stated it's my preferred method to introduce students to what's happening in QM. I do not like the semi historical approach most take because you have to unlearn stuff just as the early pioneers had to.

Feynman's approach is better as well IMHO, but still prefer Scott's.

Thanks
Bill
 
  • #36
MichPod said:
And besides, having presented this nice variation of the probability theory with complex amplitudes, what can we say about what kind of reality stays behind, say, negative amplitudes? Is it that our theory works just as a calculation tool or because it corresponds more or less to some reality?

Reality - what's that? Seriously its so laden with philosophical baggage its best banned from physics - but he we get queries along those lines all the time.

Physics is a mathematical model. How that relates to 'reality' - well you could probably spend a lifetime discussing that with some philosopher like Wittgenstein, and another lifetime, with a different answer answer with someone like Kuhn. To avoid this we generally don't discuss it here. As to interpretations of these 'negative' probabilities - we have a myriad of those - take your pick.

Thanks
Bill
 
Last edited:
  • #37
MichPod said:
Well, that depends on my goals. If I am trying to see what QM may mean, then I definitely need some other things. I am not a physicist by profession, and while my level is defenitely below what is needed to work in physics, I at least can afford to myself to not conform with the "everything is awesome" attitude which is what is always common among the majority.

If you want to know what QM 'means' in the sense of just what interpretations we have - then here is the book to get:
https://www.amazon.com/dp/3540357734/?tag=pfamazon01-20

But to understand it you need first to know QM at least to the level of Griffiths:
https://www.amazon.com/dp/1316646513/?tag=pfamazon01-20

Vanhees, who actually teaches this stuff has a different recommendation I think - I can't recall it even though I think, like Griffiths, I have a copy.

So here is the recommendation from this thread:
Feynman Lectures
Griffiths
Schlosshauer

It will be a long road - but at the end you will understand various interpretations and their pro's and con's a lot better.

BTW nobody can tell you the reality behind QM - all we have is some conjectures - that all you can study. There is no actual answer - we know of today anyway.

Thanks
Bill
 
  • Like
Likes MichPod
  • #38
bhobba said:
BTW nobody can tell you the reality behind QM - all we have is some conjectures - that all you can study. There is no actual answer - we know of today anyway.

I think that is what I said and meant in the beginning of the thread, saying "nobody knows" [why interference happens], from which the argument with me started, and in continuation saying that learning of current books in QM will not resolve my questions.
And while it is true I have no knowledge of advanced level QM, not decoherence theory, nor yet crisp knowledge of QM at B.Sc. level, it was instructive to see how my position provoked an idea that I simply did not learn QM.

I again agree with you - learning some primitive picture then unlearning it for another one is problematic and that QM teaching follows historical way is problematic as well. No doubt. It is that I do not see how Aaronson's approach is better than others or more true than others.
 
  • #39
vanhees71 said:
Indeed, as I said somewhere else in this forum today: If you want religion, go to church. You find answers to your questions in physics!

Just a comment: I don't see how calling someone's questions "religious" in any way helps. I assume you mean that the questions are not scientific, but why "religion"? You might as well call them "stand-up comedy" or "limericks"---those aren't scientific, either.
 
  • #40
You said, with regard to interference:

MichPod said:
I guess, nobody knows.

I said:
bhobba said:
We do - its just not common-sensical and can only really explained mathematically.

Now its become clear for you knowing is the reality behind the math - whatever that is - you will find even defining that is far from easy, let alone getting any kind of agreement. That's why we don't do it here. I think knowing is simply the mathematics - you think otherwise. That's fine - but you can't turn around, forgetting what has been explained in the tread, which is basically an elucidation of that, and why you can't really pin it down that easily, then claim its what you said from the start. You didn't. You were talking of knowing in the sense you meant it, which you didn't define. I talked about knowing being clear up front what I meant by knowing eg an explanation from a mathematical model.

The other point to note has anything been resolved in your view of knowing? No - and its obvious it never will until care is taken with the meaning of knowing etc etc. Then the answer is in terms of that agreed meaning. Good luck on getting such an agreement.

Why not do what I do - simply take knowing as deductions from a mathematical model. Simply take reality as what our model describe. Then these questions can be answered - but otherwise - its useless.

Thanks
Bill
 
Last edited:
  • #41
MichPod said:
And why does the Fourer transform of the coordinate probability amplitudes is supposed to give the momentum probability amplitudes?

It does - but you need further development of the idea - see the first 3 chapters of Balentine. It doesn't fill in all the gaps - you will have to think a bit - a lot actually. We are here to help if you want to make that journey.

If you don't want to do that you will simply have to take our word for it.

Thanks
Bill
 
  • Like
Likes MichPod
  • #42
My complaint with two-slit interference (and with discussions of interference, in general), is that there are two different types of interference, one of which is purely classical, and another of which is purely quantum-mechanical. I think it's easy to lose sight of what is uniquely quantum.

Maxwell's equations predict a two-slit interference pattern for light, so there is no quantum mystery about the pattern, itself.
 
  • Like
Likes Nugatory, Dadface and bhobba
  • #43
Some simple (hypotetical) analogy: some ancient scientist might have said that while we can predict solar eclipses, it's a non-scientific question to ask what reality causes them and that we DO know why they happen just because we have some periodical math model of eclipses.

I personally see much similarity between such a position and what was declared in this thread by many in relation to QM. It's not me who should explain what "understanding" and "knowing" means exactly, but rather people who declare that having a working math model is the only science we may need and other things along the same attitude. Now, I do realize that this is the mainstream approach in QM scientific community, I am yet not much used to the fact that "nobody knows" idea raises such an unconditional protest. Thinking twice, I would not put my first comment in the thread. This topic of discussion brings nothing to nobody. I just did not expect the argument will start as a result of my opinion.
 
  • #44
bhobba said:
It does - but you need further development of the idea - see the first 3 chapters of Balentine

My promise to you - I will.
And I meanwhile am reading some introductory books on QFT which you recommended to me - which helps a lot!

Thank you.
 
  • #45
PeroK said:
Reality, it seems to me, is what we measure. There are, incidentally, the same issues in classical gravitation, for example. How does the Earth know that the Sun is there? How does the Earth know the strength of the gravitational field and act accordingly? Both classical gravitation and QM are mathematical models that leave an underlying cause unexplained. There is, however, one interpretation that is too bizarre. That is that a particle acts sometimes like a wave and interferes with itself and sometimes mysteriously turns back into a point particle!

Of course. People like us that have studied physics take for granted such simplistic views of nature - reality is what we measure, its also what our theories describe - very simple views of things in terms that are almost trivial but raise no issues with our theories. However posters that haven't studied actual textbooks, not populations but proper textbooks, where such a view is taken for granted to the point its never even explained, you sort of pick it up as you go along, don't see what we see straight away. We don't read deep philosophical tomes discussing this stuff. Its simple ideas used to make sense of our theories. But people not exposed to this start to ask questions we really have not gone into in our studies. Really its not what science is worried about. Einstein for example became overly concerned about it and was basically lost as a front line researcher - he was a lonely figure at the end. Its not he didn't write interesting papers that raised interesting questions, it just not what we really worry about. If you do, you, like Einstein, tend to go down the gurgler except for rare cases like Bell.

I have pointed out often to take good old Euclidean geometry. Points are supposed to have no size and lines no widths. Yet all these theorems are proved with diagrams where such is not the case. How can that be? Its just common-sense so obvious nobody worries about it - well maybe some philosophers do - but virtually everyone exposed to it gets it and it doesn't even have to be explained. Its the same common-sense used here. It just works and fairly obviously so as well.

Thanks
Bill
 
  • #46
stevendaryl said:
Maxwell's equations predict a two-slit interference pattern for light, so there is no quantum mystery about the pattern, itself.

That's true. When talked about in the QM section I take it to be the experiment done with electrons.

Thanks
Bill
 
  • #47
MichPod said:
My promise to you - I will.

The issue will likely be getting the two axioms he uses. Think about it - but if you can't nut it out post back here.

Thanks
Bill
 
  • #48
MichPod said:
It's not me who should explain what "understanding" and "knowing" means exactly,

I am afraid it is. There are all sorts of answers to that question. Do you know Penrose, yes the great Penrose, literally believes our equations are the reality and they live in an actual Platonic realm from which our world is just a shadow. Knowing is discovering those equations. That's just one 'weird' view (I actually at one time believed it but won't go into it here). There are all sorts of other views. For example Wittgenstein believed it all just a convention, we don't really know and understand in any usual sense at all, reality is that convention. Turing argued about that with Wittgenstein in a series of famous debates that occurred when he was part of a course Wittgenstein gave. Turing said it was nuts - if it wasn't true bridges could fall down, we can't be sure of anything, society would be in a terrible mess. Wittgenstein said - so? I could go on and talk about Kuhn and others - but the situation is obvious - you can't really talk about such things unless you are clear what you are talking about. Sciences answer is simple - like Turing - its just just a model and its just a really easy common-sense view that allow us to use our theroes. We don't go down that philosophy path in a serious way. If you do you get nowhere. Wittgenstein as great as he was didn't basically win WW2 by cracking the German code - Turing did - same with Feynman and Von-Neumann that worked on the atom bomb project. BTW it was Von-Neumann that basically invented the bomb - and Bethe can express best about Feynman (remember the great Fermi and Teller were in Beth's team - Teller didn't like working under Bethe - he thought he should be a division leader - not just a team leader):


Thanks
Bill
 
  • #49
I do not think the problem may be drawn as an opposition of true science and weird phylosophy. Take my analogy again - there is some physical reality behind solar eclipses yet one may just declare a question on reasons of eclipses as "phylosophy". That QM does not explain all the "why" and "how" is a very notmal situation in my view. It is normal that scientists do not know everything and it is actually an extremely interesting situation. Interesting and normal. What IMHO is not normal at all is to declare all such questions for which the answer is not known as relating to phylosophy and not to science. No doubt that phylosophy is mostly fruitless, but again, declaring every hard question as phylosophy is a nonsense. In the end, we do not only have solar eclipses predictions but kepler orbits as well as undefstanding of why kepler orbits exist. A question "why" has been answered by science many times outside of QM, but now QM scientists tend to declare such sort of questions as meaningless in the science domain.
 
  • #50
MichPod said:
It's not me who should explain what "understanding" and "knowing" means exactly...

"To understand quantum theory, as opposed to merely knowing how to use it, we must answer two questions: 1. What does the wave function really mean? (the interpretation question); 2. What happens during a quantum measurement? (the measurement problem). The quantum reality crisis arises because physicists have no good answers for either of these questions." [Underline, LJ]

Nick Herbert in "Quantum Reality: Beyond the New Physics"
 
Last edited by a moderator:
Back
Top