Is t*x = x*t^(-1) for Elements of Order 2 in Any Group?

  • Thread starter Thread starter xsw001
  • Start date Start date
xsw001
Messages
34
Reaction score
0
Let x, y be elements of order 2 in any group G.
Prove that if t = xy, then t*x = x*t^(-1)

Here is what I got so far.
Proof:
Since |x| = 2 => x^2 = 1; |y| = 2 => y^2 = 1, then (x^2)(y^2) = 1 => (xy)^2 = 1
Suppose t = xy, then t^2 = (xy)^2 = 1
WTS (want to show) t*x = x*t^(-1)

This group looks like Dihedral group D2n, the operation t*x = x*t^(-1) similar to r*s = s*r^(-1),
we know r^n = s^2 = 1 in D2n, since x^2 = 1, we can let x = s, so x^2 = s^2 = 1. Hence we've shown x = s,
Now I need to show t^n = (xy)^n = 1 so that I can let t = xy = r,
and if we show t = xy = r, then we get exactly the same operation in D2n such that r*s = s*r^(-1) where r = t = xy and s = x

Here is what I stuck, how do I show t^n=(xy)^n=1 ? I only know t^2 = (xy)^2 = 1 from the given condition. Now I need to derive from there and to show that t^n = (xy)^n

Any suggestions?

BTW, I think that I post in the wrong session. I'll make a note next time since I can't delete the post.
 
Physics news on Phys.org
Notice that t^{-1}=y*x because t*(y*x)=(t*y)*x=(x*(y*y))*x=(x*1)*x=1and similarly (y*x)*t=1.
 
Yes! Got it!
Since t^-1=(y^-1)*(x^-1) and x^2=1 => x=x^-1, y^2=1 => y=y^-1, so t^-1=yx
Then tx=xyx, and x(t^-1)=xyx, indeed they are equal!
Thanks for the tips Delta! Now it seems so simple!
 
Last edited:
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top