Is the Cauchy Equation Still Homogeneous if X is a Non-zero Function of x?

  • Thread starter Thread starter iVenky
  • Start date Start date
  • Tags Tags
    Homogeneous
iVenky
Messages
212
Reaction score
12
The Cauchy homogeneous linear differential equation is given by

x^{n}\frac{d^{n}y}{dx^{n}} +k_{1} x^{n-1}\frac{d^{n-1}y}{dx^{n-1}} +...+k_{n}y=Xwhere X is a function of x and k_{1},k_{2}...,k_{n} are constants.

I thought for this equation to be homogeneous the right side should be 0. (i.e.) X=0.
But if X is a function of x then how can this be homogeneous?

Thanks a lot :)
 
Physics news on Phys.org
It isn't. Why do you call it "homogeneous"?

(Googling "Cauchy's homogeneous equation", I found a "youtube" tape calling this equation "homogeneous"- its just wrong! I suspect they started talking about a homogeneous equation and did not change the title when they generalized).
 
Last edited by a moderator:
Let y(x) = Y(x)+(X/kn) and the rigth side will be 0.
 
JJacquelin said:
Let y(x) = Y(x)+(X/kn) and the rigth side will be 0.

If I do things like that, I can make any equation homogeneous.

Don't forget that X is a function of 'x'.
 
You are assuming that X is a constant, aren't you?
 
Sorry, I was assuming that X was constant.
So, my answer is out of subject.
 
I have chosen that X to be a function of 'x' and it is not a constant

So I think it is not homogeneous.

For the record even if X is a constant it is still not homogeneous, isn't it?

thanks a lot :)
 
iVenky said:
I have chosen that X to be a function of 'x' and it is not a constant

So I think it is not homogeneous.

For the record even if X is a constant it is still not homogeneous, isn't it?

thanks a lot :)
Yes, that is correct.
 
Back
Top