Is the Change in Internal Energy Just 4513 J When No Work Is Done?

Click For Summary
In a pressure cooker, when 2.0 g of water is vaporized by adding 4513 J of heat, the change in the system's internal energy can be determined using the equation U = Q - W. Since no work is done by the system, the work term (W) is zero. Therefore, the change in internal energy is equal to the heat added, which is 4513 J. This confirms that the internal energy change is indeed 4513 J when no work is performed. The discussion emphasizes the relationship between heat added and internal energy in a closed system.
yinnxz
Messages
3
Reaction score
0
Homework Statement
The lid of a pressure cooker forms a nearly
airtight seal. Steam builds up pressure and
increases temperature within the pressure
cooker so that food cooks faster than it does
in an ordinary pot. The system is defined as
the pressure cooker and the water and steam
within it.

If 2.0 g of water is sealed in a pressure
cooker and then vaporized by heating, and
4513 J must be added as heat to completely
vaporize the water, what is the change in the
system’s internal energy?
Relevant Equations
U = Q - W
Since the system is doing no work, would it be just 4513 J? I don't think there is any other information to use
 
Physics news on Phys.org
yinnxz said:
Homework Statement: The lid of a pressure cooker forms a nearly
airtight seal. Steam builds up pressure and
increases temperature within the pressure
cooker so that food cooks faster than it does
in an ordinary pot. The system is defined as
the pressure cooker and the water and steam
within it.

If 2.0 g of water is sealed in a pressure
cooker and then vaporized by heating, and
4513 J must be added as heat to completely
vaporize the water, what is the change in the
system’s internal energy?
Relevant Equations: U = Q - W

Since the system is doing no work, would it be just 4513 J? I don't think there is any other information to use
Correct
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?