- #1

dirk_mec1

- 761

- 13

## Homework Statement

http://img444.imageshack.us/img444/7641/20240456gw8.png

## Homework Equations

http://img14.imageshack.us/img14/5879/63445047rj2.png

Note that the rightside of the rod is insulated.

## The Attempt at a Solution

I get this model:

[tex] \frac{ \partial{u} }{ \partial{t} } = \kappa \frac{ \partial{ ^2 u} }{ \partial{x^2} } +s [/tex]

[tex]u(0,t)=u_0[/tex]

[tex]\frac{ \partial{u}} { \partial{x} } = 0[/tex]In steady state this gives: [tex]u(x) = \frac{- s}{ \kappa} \frac{1}{2}x^2 + \frac{s}{ \kappa } L x + u_0 [/tex]

But if I calcute than the asked u' at x=0:

I get:

[tex]\frac{du}{dx} = \frac{s}{ \kappa} L [/tex]

Is this correct?

Last edited by a moderator: