Is the 'Integer Function' Bound Valid for Given Functions f(t) and g(u)?

  • Thread starter Thread starter zetafunction
  • Start date Start date
  • Tags Tags
    Integral
zetafunction
Messages
371
Reaction score
0
given [x] the 'integer function' would be the following bound valid ??

\int_{0}^{\infty}dt [g(x/t)]f(t) \le \int_{0}^{\infty}dt g(x/t)f(t)

for a given functions f(t) and g(u) u=x/t , here g is a non-decreasing positive function for positive arguments (and real) of parameter u=x/t
 
Physics news on Phys.org
Hi,

if f(t) >= 0 for t >=0, then using (g(x/t) + 1) would be a better idea ?
Now if
f(t) = f^{+}(t) - f^{-}(t),
where f^{+}(t) and f^{-}(t) denotes max(f(t),0) and max(-f(t),0) respectively
then one can use g(x/t) + 1 for f+(t) and g(x/t) - 1 for f-(t) to obtain a bound.
 
Back
Top