motion_ar
- 33
- 0
In classical mechanics, if we consider a force field (uniform or non-uniform) in which the acceleration \vec{a}_A of a particle A is constant, then
{\vphantom{\int}} \vec{a}_A = \vec{a}_A\int \vec{a}_A \cdot d\vec{r}_A = \int \vec{a}_A \cdot d\vec{r}_A{\vphantom{\int}} \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} = \Delta \; \vec{a}_A \cdot \vec{r}_A{\vphantom{\int}} \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} - \, \Delta \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}} = 0{\vphantom{\int}} m_A^{\vphantom{^{\;2}}} \left( \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} - \, \Delta \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}} \right) = 0{\vphantom{\int}} \Delta \; T_A + \, \Delta \; V_A = 0{\vphantom{\int}} T_A + \, V_A = constant
where
T_A = {\textstyle \frac{1}{2}} \; m_A^{\vphantom{^{\;2}}}\vec{v}_A^{\;2}V_A = - \; m_A^{\vphantom{^{\;2}}} \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}}
If \vec{a}_A is not constant but \vec{a}_A is function of \vec{r}_A then the same result is obtained, even if Newton's second law were not valid.
{\vphantom{aat}}
{\vphantom{\int}} \vec{a}_A = \vec{a}_A\int \vec{a}_A \cdot d\vec{r}_A = \int \vec{a}_A \cdot d\vec{r}_A{\vphantom{\int}} \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} = \Delta \; \vec{a}_A \cdot \vec{r}_A{\vphantom{\int}} \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} - \, \Delta \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}} = 0{\vphantom{\int}} m_A^{\vphantom{^{\;2}}} \left( \Delta \; {\textstyle \frac{1}{2}} \; \vec{v}_A^{\;2} - \, \Delta \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}} \right) = 0{\vphantom{\int}} \Delta \; T_A + \, \Delta \; V_A = 0{\vphantom{\int}} T_A + \, V_A = constant
where
T_A = {\textstyle \frac{1}{2}} \; m_A^{\vphantom{^{\;2}}}\vec{v}_A^{\;2}V_A = - \; m_A^{\vphantom{^{\;2}}} \; \vec{a}_A^{\vphantom{^{\;2}}} \cdot \vec{r}_A^{\vphantom{^{\;2}}}
If \vec{a}_A is not constant but \vec{a}_A is function of \vec{r}_A then the same result is obtained, even if Newton's second law were not valid.
{\vphantom{aat}}