Is the Real Number Line Actually Infinite?

Stoney Pete
Messages
49
Reaction score
1
Hi guys,

Here is a little puzzle I have been wondering about. I can't solve it, perhaps you can help.

We know there are infinitely many real numbers on the number line. Indeed, already between 0 and 1 there are infinitely many real numbers. So if a real number is a point on the number line, there must be infinitely many points between 0 and 1. This is only possible if the points have zero extension. Now, infinity times zero is still zero. So the number line must have zero length! This is obviously absurd. But where is the false premiss?

Source: Yanofsky, The Outer Limits of Reason.
 
Mathematics news on Phys.org
Stoney Pete said:
Now, infinity times zero is still zero
Why? Infinity is not even a real number. How do you define multiplication on a set that both contains infinity and zero?
 
Stoney Pete said:
Hi guys,

Here is a little puzzle I have been wondering about. I can't solve it, perhaps you can help.

We know there are infinitely many real numbers on the number line. Indeed, already between 0 and 1 there are infinitely many real numbers. So if a real number is a point on the number line, there must be infinitely many points between 0 and 1. This is only possible if the points have zero extension. Now, infinity times zero is still zero.
No. You can't use arithmetic with infinite values. Infinity times zero is one of several so-called indeterminate forms, such as ##[\infty \cdot 0]##, ##[\infty/\infty]##, ##[0 / 0]##and ##[\infty - \infty]##. They are usually written inside brackets to indicate that they aren't actually numbers.

Indeterminate forms typically show up in limits in calculus
Stoney Pete said:
So the number line must have zero length! This is obviously absurd. But where is the false premiss?

Source: Yanofsky, The Outer Limits of Reason.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
13
Views
4K
Replies
31
Views
2K
Replies
16
Views
2K
Replies
6
Views
2K
Replies
12
Views
5K
Replies
20
Views
2K
Back
Top