MHB Is the Solution Unique? Investigating the Uniqueness of a Boundary Value Problem

  • Thread starter Thread starter evinda
  • Start date Start date
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Suppose that we have the following boundary value problem:

$$a^2 u_{xx}=u_t, 0<x<L, t>0 \\ u(x,0)=f(x) , 0 \leq x \leq L\\ u(0,t)=0, u(L,t)=0, t>0$$

By supposing that $u(x,t)=X(x) T(t)$ we find that the solution is of the form $u(x,t)=\sum_{n=1}^{\infty} c_n e^{-\frac{n^2 \pi^2 a^2 t}{L^2}} \sin{\frac{n \pi x}{L}}$

where $c_n=\frac{2}{L} \int_0^L f(x) \sin{\frac{n \pi x}{L}}$.

But do we know that this solution is unique? Or could there also be an other solution that will not be of the form $X(x) T(t)$ ?
 
Physics news on Phys.org
What you have isn't "of the form X(x)T(t)"! It is a sum of such, basically a Fourier series. Now, what do you mean by "unique"? You may be able to write the solution in a different form but it will be the same function. It is easy to show that there is only one solution to this problem: suppose there were two, u_1(x, t) and u_2(x, t). Then u(x, t)= u_1(x, t)- u_2(x, t) satisfies the same differential equation but with all boundary and initial conditions equal to 0. And it is easy to show that only the zero function, 0 for all x and t, satisfies that.
 
HallsofIvy said:
What you have isn't "of the form X(x)T(t)"! It is a sum of such, basically a Fourier series. Now, what do you mean by "unique"? You may be able to write the solution in a different form but it will be the same function. It is easy to show that there is only one solution to this problem: suppose there were two, u_1(x, t) and u_2(x, t). Then u(x, t)= u_1(x, t)- u_2(x, t) satisfies the same differential equation but with all boundary and initial conditions equal to 0. And it is easy to show that only the zero function, 0 for all x and t, satisfies that.

Ok, I see. Thank you! (Smile)
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top